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Abstract

BAOWEI XU: Option Pricing in Random Field Models with Stochastic
Volatility for the Term Structure of Interest Rates.

(Under the direction of Chuanshu Ji.)

In this dissertation, we introduce a general interest rate modeling framework by

looking at yield curves in a Hilbert space, and bridge the popular HJM factor models

with more recent random field models. Then we study the problem of vanilla interest

rate option (cap) pricing under the random field model. This will be a generalization

of Kennedy (1994) paper in the sense that the volatility will also follow a random field

process instead of being deterministic. In particular, we consider both cases in which

the two random fields for forward rates and volatilities are independent or correlated. In

the computation of option prices, we have proposed a log-normal approximation of the

summary statistics - integrated volatility, for the independent case and have proposed

a trivariate Gaussian approximation for the correlated case. The approximations will

enable us to compute option prices much faster than the usual brute force Monte Carlo

method which introduces certain discretization error. Finally, we perform simulation

studies of a MCMC estimation procedure for a special random field model with one-

factor stochastic volatility.
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Chapter 1

Introduction

Modeling the term structure dynamics of (stochastic) interest rates is crucial in the

research of fixed-income markets. However, problems in this area are much more com-

plicated than their counterparts in equity (stock) markets. There have been several

stages in the development of interest rate models. Early studies were focused on the

dynamics of short rate r(t) at time t, such as Vasicek (1977), Cox, Ingersoll and Ross

(1985), Hull and White (1993). Then term structure models came along, particularly

the HJM framework established in the seminal work of Heath, Jarrow and Morton

(1992), which governs the dynamics of forward rate f(t, T ) set at time t while becom-

ing effective at T > t, or equivalently of bond price P (t, T ) or yield Y (t, T ). Such an

extension is interpreted as a transition from finite state models to infinite state models,

because at each t, r(t) is a 1D quantity while f(t, T ) is a function (a yield curve) over

different terms T ∈ [t, t + Tmax]. Here Tmax is some fixed long term say 30 years. A

short rate model yields a term structure as an output, which may inevitably be differ-

ent from observed yield curve data. Such discrepancy can be easily avoided in a term

structure model, which reads the original term structure {f(0, T )} as input data. Term

structure models have their own limitations. For one thing, assuming the evolution of

f(t, T ) follows a stochastic differential equation (SDE) driven by a 1D standard Wiener
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process (Brownian motion), then the increments df(t, T1) and df(t, T2) with the same

t but different terms T1 and T2 will be perfected correlated. This problem can be alle-

viated by adding more “factors”, i.e. one can assume in a HJM model that df(t, T ) is

driven by a k-dimensional Wiener process with k > 1. The idea is that although there

are infinitely many possible values for the term T , one hopes the information about

a yield curve can be summarized by reducing to just a finite number of determining

factors. Such dimension reduction is undoubtedly useful, but the choice of k is an art:

too large the model will be very difficult to calibrate, while if too small it won’t have

enough flexibility to fully represent market data.

A finite factor HJM model allows us to fit the current yield curve, but it does not

permit consistency with term structure innovation. Therefore, practitioners need to

continuously recalibrate model parameters in order to fit new term structures. Since

those parameters are not supposed to be stochastic processes and constantly updated,

the HJM framework cannot resolve its inconsistency with empirical data. A more

recent approach, called random field models or string models, makes recalibration of

parameters unnecessary as it can be consistent with any observed term structure, and

it enjoys several other modeling advantages as well. Meanwhile, it invites a daunting

challenge in required computation and empirical studies.

The introduction of random field models represents another qualitative change, from

finite factor models to infinite factor models. This is a relatively new area. Kennedy

(1994), (1997) originally proposed Gaussian random fields for modeling forward rates

and presented an explicit option pricing formula. Goldstein (2000), Santa-Clara and

Sornette (2001) contributed to set a more general framework. The encyclopedic book on

interest rate modeling, James and Webber (2000), included a section on random field

models. Mathematically, a random field model is driven by an infinite dimensional

Wiener process (or equivalently its “derivative” referred to as a white noise process).

2
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For every t, the cumulative random noise W (t, ·) = {W (t, T ) : t ≤ T ≤ t + Tmax}

is defined as a Gaussian random variable taking values in a Hilbert space H with

a prescribed correlation function. The correlation function of W (t, ·), along with a

further specification of drift and volatility processes will determine the dynamics of

f(t, T ) via a SDE. In particular, df(t, T ) and df(t′, T ′) in this model are correlated in a

non-degenerate and non-perfect manner for any non-identical pairs (t, T ) and (t′, T ′),

which makes it more flexible than the previous factor models. See the book Carmona

and Tehranchi (2006) for the most updated rigorous treatment of random field interest

rate models. It should be mentioned that the infinite dimensional white noise setting

enables us to view HJM factor models as a special case: using the orthogonal series

expansion of W (t, ·) in H, we can truncate it to a finite sum with k terms that naturally

give rise to a k-factor HJM model.

We propose to study random field term structure models in this dissertation. Here

are several possible novel contributions we wish to make.

(i) Volatility modeling

Volatility modeling is always at the center of financial econometrics, and its

importance is recognized by researchers and practitioners in the community of

fixed-income markets. We adopt stochastic volatility (SV) models in which the

volatility {V (t, T )} is also defined as a random field in addition to the forward

rate field {f(t, T )}. SV models are used extensively in economics and finance.

Early works include Clark (1973), Taylor (1982), Tauchen and Pitt (1983), and

Gallant, Hsieh, and Tauchen (1991). A review was provided by Ghysels, Harvey,

and Renault (1996), and a lot more applications have appeared since then. How-

ever, there is virtually none related to random field interest rate models, except

for Collin-Dufresne and Goldstein (2003), to the best of our knowledge. Even in

Collin-Dufresne and Goldstein (2003), only a finite factor affine SV model was

3
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adopted so that option pricing can be done by using the Fourier inversion formula

proposed in Heston (1993). In contrast, we treat {V (t, T )} as a genuine random

field in our work.

(ii) Option pricing and probability approximation schemes

Our primary interest is to derive option pricing formulas for random field SV term

structure models. Although random field models enjoy an advantage of modeling

flexibility, very little has been done for providing workable option pricing formu-

las, due to the tremendous technical challenge. Kennedy (1994) gave an explicit

formula in the case of Gaussian fields for forward rate with deterministic volatil-

ity. Collin-Dufresne and Goldstein (2003) introduced a finite factor affine SV

model and offered the resulting Heston’s formula for option pricing. We propose

a bold approach here to define both forward rate {f(t, T )} and SV {V (t, T )}

as random fields. Moreover, we adopt a log-linear SV structure instead of the

square-root affine SV structure. Therefore, Heston’s formula is not applicable to

the setting we consider. Using log-linear SV models has a long history. Its ap-

plications were showed, for example, in Scott (1987), Danielson (1994), Jacquier

et al. (1994), Kim et al. (1998), Chernov et al. (2003), Cheng et al. (2008). A

probability approximation scheme was proposed in Cheng et al. (2008) and its

promise was demonstrated in both simulation studies and an empirical example

with foreign exchange return and option data. The complexity in random field

models makes it more imperative to develop similar approximation methods. We

tackle this problem in two steps. Step one concerns a special case without a

”leverage effect”, i.e. we assume the two white noise processes for forward rates

and SV are uncorrelated. The term ”leverage effect” is borrowed from the equity

markets where a negative price shock will increase the leverage of a firm and thus

more likely a higher volatility. In other words, there exists a negative correlation

4
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between the innovation for equity price and its volatility, while economical in-

terpretation is more difficult in the fixed income field. This simplification allows

us to extend Kennedy’s pricing formula by using a log-normal random variable

as a proxy for the integrated volatility ( denoted as σ2
t ) in the life time [t, T ]

of an option. This is a significant dimension reduction in Monte Carlo integra-

tion: brute-force simulation of random field samples is replaced by generating

a 1D quantity σ2
t . Specifications of the two parameters in the proposed log-

normal density are transformed from the first and second moments of σ2
t , which

are calculated with a couple of low dimensional integrals involved. See Chapter

3 for details. While some authors argue that innovations in interest rate levels

are largely uncorrelated with innovations in the volatility of interest rates (e.g.,

Ball and Torous (1999), Chen and Scott (2001), and Heidari and Wu (2003)),

Trolle and Schwartz(2009) argues that the correlation between forward rates and

volatility innovations is important in capturing the implied volatility skewness,

which is an import feature that has been observed in the market. In Step two,

we will study this more realistic but sophisticated case with a ”leverage”, i.e. the

aforementioned two random fields of white noise are assumed to be correlated.

Technically, we encounter a serious challenge in the derivation of an approximate

pricing formula. Instead of a single summary statistic σ2
t , there are seven vari-

ables involved in the conditional expectation expression for the option (cap) price,

which fortunately can be further grouped into three summary statistics. Still, we

follow the same path by computing all first and second moments, based on which

we will specify a trivariate Gaussian law for the summary random vector. The

option price can be computed by simulating a large number of Gaussian vectors

which approximate the distribution of the summary random vectors. We use

numerical study to validate the proposed (log) Gaussian approximation scheme,

5
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which turns out to be very good under both cases.

(iii) Model calibration simulation study

Numerical studies are further behind the theoretical development in random field

term structure models. Besides simulation studies for computing an option price,

a major statistical task is model calibration using, ideally, a combined data struc-

ture of asset returns and option prices. Here returns in the fixed income field

are based on yields or zero-coupon bond prices, which are both equivalent to

forward rates {f(t, T )}. Examples of bond options include caps and swaptions.

Again, there have been a lot of previous works in statistical inference for SV

models with stock returns, we only mention Chernov et al. (2003) and Chib et

al. (2002) here. They represent the GMM/EMM frequentist approach and the

Markov Chain Monte Carlo (MCMC) Bayesian approach respectively. With the

combined data of stock returns and options, see Pan (2002) for the use of GMM,

Eraker (2004) and Cheng et al. (2008) for MCMC. As for inference on random

field models considered in this work, we are only aware of Bester (2004) as a rare

attempt at performing MCMC Bayesian computational inference using interest

rate data. In the mean time, there are no published papers yet on random field

model-based inference using both yields and option data. To reduce the com-

plexity with MCMC computational inference, we will focus on simulation study

of calibrating a one-factor SV random field model using forward rates data. And

defer the model calibration for a random field volatility model using both forward

rates and option data into future studies. In regard to the specification of the

random field, Longstaff et al. (2001) suggested some ad hoc specifications for

correlation functions. Although they did not assume SV, the suggestions may

shed some light on how we should pursue our inference.

6
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The rest of the dissertation is organized as follows: A rigorous mathematical frame-

work for random field term structure models is introduced in Chapter 2. Chapter 3

concerns our main contributions, in which we derive option pricing formulas and their

numerical computation through probabilistic approximation. Also included are nu-

merical studies that examine the accuracy and speed of the approximation schemes.

Chapter 4 contains an extension to Chapter 3, where we consider correlated instead of

independent innovations between forward rates and their volatilities. Finally in Chap-

ter 5 we carry out a simulation study to test the performance of a MCMC calibration

procedure for a random field forward rate process with one factor SV. Here a calibra-

tion procedure has been repeatedly performed on simulated forward rates data and

parameters estimation performance has been examined.

7
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Chapter 2

Term Structure Dynamics

Modeling the dynamics of term structure is essential for pricing interest rate deriva-

tives such as cap (European call option on short rate) and swaption (option on coupon

bond). There are currently two main approaches in the literature: one is the tradi-

tional finite factor models of HJM type [Heath et al (1992)], driven by a finite number

of Brownian motions; the other is the more recent development of random field models,

also called string models [Kennedy (1994,1997), Goldstein (2000), Santa-Clara and Sor-

nette (2001), Collin-Dufresne and Goldstein (2003)] String models have infinite factors,

hence enjoy greater modeling flexibility.

In this chapter, we present a general framework for string models where random

noises are defined as an infinite dimensional Wiener processes. Here is the motivation:

A forward rate or bond price is indexed by (t, T ), where t represents the time at which

these financial variables are recorded, and T stands for the maturity date. Random

noises introduced at different pairs (t, T ) will be correlated, modeled by a certain corre-

lation function. We will define a Wiener process W = {W(t), t ≥ 0} such that at each

t, the random variable W(t) = {W(t, t + u) := W(t)(u), 0 ≤ u ≤ Tmax} takes values

in a Hilbert space H consisting of square integrable functions on [0, Tmax], L
2(0, Tmax),
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and is governed by a Gaussian measure over H. The covariance operator tQ for the

Gaussian measure will characterize the dependence among noises of different terms T .

Having defined this string of noises, a stochastic drift term and volatility coefficient

will be introduced so that the forward rate process will follow a stochastic differential

equation evolving in time t. Ultimately, dependence among forward rates at different

pairs (t, T ) will depend on both the covariance operator Q and the proposed volatility

dynamics V .

Note that a new contribution in this work is to assume the stochastic volatility

V = {V (t, T )} also follows a random field model, and to propose an approximation

scheme to price vanilla options written on zero-bond prices or interest rates. The rea-

son why we need a stochastic volatility model beyond ARCH/GARCH in term structure

is because several recent studies have shown that there seem to be risk factors that af-

fect the prices of caps and swaptions but not the underlying Libor and swap rates. In

other words, bonds do not seem to span interest rate derivatives. e.g. Heidari and Wu

(2003), Collin-Dufresne and Goldstein (2003), Li and Zhao(2006). Being popular SV

models, there is a serious issue with factor models: high dimensional factor models with

SV are very difficult to calibrate, and thus it is rare to see models with more than three-

factors. However, Jagannathan, Kaplin and Sun (2003) suggest that low-dimensional

affine models can not capture the joint dynamics of yield, caps and swaptions; Dai and

Singleton (2003) also find that observed innovation correlation between non-overlapping

intervals of yield curve is much lower than a two or three factor model would suggest.

Random field model is naturally high dimensional, and in fact it is regarded as infinite

factor model. With some structural assumptions, it may be easier to implement than a

factor model. Longstaff, Santa-Clara and Schwartz (2001) started with a random field

representation and applied Principle Component Analysis to match parameters with

9
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the first M-components from data. However, Kerkhof and Pelsser(2002) pointed out

that random field model estimated using this manner are observationally equivalent to

the finite-factor models.

This chapter is organized as follows: in the first section, we introduce some proba-

bility basics and define function valued Wiener process by introducing general Gaussian

measure; then we bridge the popular factor HJM model with the more recent random

field model under a general framework, and provide conditions under which they can

both be special cases of the general framework; in the third section, we will examine

certain special specifications of the random field model so that it can degenerate to

some popular models in the literature; and lastly, to complete the model specification,

we will summarize some of the common specifications for volatility.

2.1 Probability Basics

Here we follow J. Zabczyk’s notes on ’Parabolic Equations on Hilbert Spaces’ to in-

troduce some probability theory and then define the Gaussian measure and Wiener

process in a general Hilbert space.

Probability Space

A measurable space (E, E) consists of a set E and of a σ-field E . If µ is a nonnegative

measure on a measurable space (E, E) such that µ(E) = 1 then µ is called a probability

measure, and the triplet (E, E , µ) is called a probability space. If (Ω,F) and (E, E)

are two measurable spaces, then any measurable transformation X : Ω 7→ E is called

a random variable. Assume that (Ω,F ,P) is a probability space and X is a random

10
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variable taking values in E. The image µ of the measure P by the transformation X,

µ(A) = P(ω : X(ω) ∈ A),∀ A ∈ E is called the law or the distribution of X and

denoted by L(X).

Assume that H is a separable Hilbert space equipped with the inner product < ·, · >

and Borel σ-field B(H). Probability measures on H will always be regarded as being

defined on B(H). If µ is a probability measure on H then its characteristic function

Gµ is a complex valued function on H of the form

Gµ(λ) =

∫
H

ei<λ,x>µ(dx), λ ∈ H.

There exists a one to one correspondence between characteristic functions and the prob-

ability measures, which means Gµ(λ) = Gν(λ),∀λ ∈ H if and only if the two measures

µ and ν are identical.

Gaussian Measures

Gaussian probability measure on R is well known and usually is defined by its density or

characteristic function. More generally a measure µ on a Hilbert space H is Gaussian

if all linear mappings y 7→< λ, y > defined on H, considered as random variables

on (H,B(H), µ) with values in (R,B(R)), have Gaussian laws. Random variables are

Gaussian if their laws are Gaussian. Similar to the Gaussian measure on R, we can also

define the measure on H through its characteristic function with the following theorem:

Theorem 1. A measure µ is Gaussian if and only if

Gµ(λ) = ei<λ,m>−
1
2
<Qλ,λ>, λ ∈ H

11
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where m ∈ H and Q is a self-adjoint, nonnegative, operator with finite trace. We will

denote the measure as N(m,Q) with mean m and covariance Q.

Assume that X is a Gaussian random variable L(X) = N(m,Q), and {ek} is the

complete system of eigenfunctions of Q corresponding to eigenvalues {γk}, which means

Qek = γkek, k = 1, 2, . . . ,∞. Then we have the following facts:

Fact 1: E < X, λ >=< m,λ >, ∀λ ∈ H;

Fact 2: E|X −m|2 =
∑∞

k=1 γk;

Fact 3: E < X −m, a >< X −m, b >=< Qa, b >, ∀a, b ∈ H;

Fact 4: if γk > 0 then wk = γ
− 1

2
k < X, ek > is a standard normal variable with

real values, L(wk) = N(0, 1), and the random variables wk, k = 1, . . . ,∞ are mutually

independent.

Fact 5: X =
∑∞

k=1

√
γkwkek +m in distribution.

The requirement that Q has finite trace will make sure that the infinite series in the

Fact 5 convergences a.e. in H. This can be seen from the following corollary.

Corollary 1. let {ek} be an orthonormal sequence in a Hilbert space H, {wk} be

a sequence of independent Gaussian random variables with L(wk) = N(0, 1),∀k =

1, 2, . . . ,∞, and let γk, k = 1, . . . ,∞ be nonnegative numbers. Then the series

∞∑
k=1

√
γkwkek

converges in H,P − a.s. if and only if
∑∞

k=1 γk <∞.

It can be seen that, Fact 1 relates to the mean of a Gaussian measure; Fact 2 relates

to the overall variance of the measure; and Fact 3 actually characterizes the covariance

structure of the Gaussian measure, which can be seen more clearly under the following

condition and corollary:

12
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Condition 1 : We will consider a special linear operator Q which is self-adjoint, non-

negative, with finite trace, and also has kernel function c(·, ·) such that ∀ a ∈ H, Qa ∈

H and (Qa)(·) =
∫
c(s, ·)a(s)ds. We will call c(·, ·) the kernel of the operator Q.

Corollary 2. Suppose X = {X(s), 0 ≤ s ≤ Tmax} ∈ H is a Gaussian measure

with L(X) = N(m,Q). If Q satisfies Condition 1 with kernel function c(·, ·) then

Cov(X(s), X(t)) = c(s, t).

Proof: Without loss of generality we can assume m = 0. For any x1, x2 > 0 and ∆ > 0

if take a = I[x1,x1+∆](s) and b = I[x2,x2+∆](t), then from Fact 3 we have

E < X, a >< X, b > = < Qa, b >

m

E

∫ x1+∆

x1

X(s)ds

∫ x2+∆

x2

X(t)dt =

∫ x2+∆

x2

Qa(t)dt

Now since Qa(x) =
∫
c(x, y)a(y)dy, we have :

∫ x1+∆

x1

∫ x2+∆

x2

Cov(X(s), X(t))dsdt =

∫ x2+∆

x2

∫
c(s, t)a(s)dsdt

=

∫ x2+∆

x2

∫ x1+∆

x1

c(s, t)dsdt

Because x1, x2 and ∆ are arbitrary, we obtain Cov(X(s), X(t)) = c(s, t). QED.

13
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Infinite Dimensional Wiener Process

Here and for the rest of the dissertation, we will assume the string shock to be an

infinite dimensional Wiener process W = {W(t); t ≥ 0}, taking values in a sep-

arable Hilbert space H = C[0, Tmax]) equipped with inner product < a, b >:=∫ Tmax
0

a(s)b(s)ds,∀a, b ∈ H. Here it is essentially assumed that forward rate curve

and its instantaneous shock are both continuous functions of time to maturity, which

is a reasonable assumption.

Suppose (Ω,F ,P) is a probability space with a given increasing family of σ-fields

Ft ⊂ F , t ≥ 0. A family W(t), t ≥ 0 of H-valued random variables is called a Wiener

process, if and only if,

1. W(0) = 0;

2. For almost all ω ∈ Ω,W(t, ω) is a continuous function of t;

3. W(t1),W(t2)−W(t1), . . . ,W(tn)−W(tn−1) are independent random variables,

∀0 ≤ t1 < t2 < . . . < tn,∀n ∈ N

4. L(W(t)−W(s)) = L(W(t− s)),∀t ≥ s.

If W is a Wiener process, then ∀t > 0, L(W(t))) is a Gaussian measure on H

with mean 0 and covariance tQ, where Q ∈ H is a non-negative operator satisfies

Condition 1 . Suppose Q has eigenvalues {γk}(∀k, γk is non-negative and real number)

with corresponding eigenfunctions {ek}. Then the characteristic function for W(t) will

be

GW(t)(λ) = Eei<W(t),λ> = e−
1
2
t<Qλ,λ>, λ ∈ H.

14
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Moreover, utilizing the definition of Wiener process and the Fact 1-5 of Gaussian mea-

sure, the following facts corresponding to Wiener process W(t) can be shown easily:

Fact 1: E < W(t), a >= 0, ∀a ∈ H;

Fact 2: E < W(t),W(s) >= E|W(t ∧ s)|2 = (t ∧ s)
∑∞

k=1 γk;

Fact 3: E [< W(t), a >< W(s), b >] = (t ∧ s) < Qa, b >, ∀a, b ∈ H;

Fact 4: If γk > 0 then wk(t) = γ
− 1

2
k < W(t), ek > is a one-dimensional standard

Wiener process, and the Wiener processes wk(t), k = 1, . . . ,∞ are mutually indepen-

dent.

Fact 5: W(t) =
∑∞

k=1

√
γkwk(t)ek ∀t ≥ 0 in distribution.

Finite Rank Approximation

Corollary 3. Define

WN(t) =
N∑
k=1

√
γkwk(t)ek,∀t ≥ 0,∀N = 1, . . . ,∞.

Then for ∀ arbitrary T > 0 there exists a sequence Nm → ∞ such that WNm(.) is

uniformly convergent on [0, T ] as m→∞, for almost everywhere ω ∈ Ω.

Proof: Let N > M then

E

(
sup
t≤T
|

N∑
k=M+1

√
γkwk(t)ek|2

)
= E

(
sup
t≤T

N∑
k=M+1

γkw
2
k(t)

)

≤
N∑

k=M+1

γkE( sup
t∈[0,T ]

w2
k(t)) ≤ C

N∑
k=M+1

γk

where C = E(supt∈[0,T ] w
2
1(t)). Therefore, one can find an increasing sequence {Nm}

15
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s.t.

P

(
sup
t≤T
|WNm+1(t)−WNm(t)| ≥ 1

2m

)
≤ 1

2m
, m = 1, . . . ,∞

The result now follows. QED.

Equivalent conditions under which general Wiener process has finite rank N , i.e.

W(t) =
∑N

k=1

√
γkwk(t)ek:

1. Qek = γkek, and γk = 0, ∀k ≥ N ;

2. c(u, v) = Cov(W(1)(u),W(1)(v)) =
∑N

k=1 γkek(s)ek(t), this means the kernel

of Q can be factorized; It can be seen if c(t, t) = 1, ∀0 ≤ t ≤ Tmax then∑N
k=1 γke

2
k(t) = 1, ∀0 ≤ t ≤ Tmax. This additional constrain will decrease the

number of tuning functions for c(·, ·), ek, by one.

2.2 General HJM Models

(Ω,F ,P) is a probability space with a given increasing family of σ-fields Ft ⊂ F , t ≥ 0.

If we denote the whole forward rate curve with time to maturity between 0 and Tmax

at time t as f(t), then we can define the risk-neutral forward rate dynamics as:

f(t) = f(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW(s) (2.1)

or equivalently in differentiate form,

df(s) = µ(s)ds+ σ(s)dW(s) (2.2)

where

• ∀s, µ(s) and f(s) both take value in a separable Hilbert Space H (C[0, Tmax]),

16
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and µ(·) is integrable a.e., P(
∫ t

0
|µ(s)|ds <∞) = 1, ∀t > 0

• ∀s, σ(s) ∈ H := L(H,H) is a linear operator from H to H which satisfies

P (
∫ t

0
||σ(s)||2Hds < ∞,∀t ≥ 0) = 1. L(H,H) is the set of all linear operators

from H to H, which from theory of functional analysis, is also a separable Hilbert

space. This condition will ensure that
∫ t

0
σ(s)dW (s) is well defined. Note that,

most of the time in specific examples, we will further assume σ(s) to satisfy

Condition 2 below.

• W(s) is an infinite dimensional Wiener process taking values in H with covariance

Q ∈ H,where Q is an operator satisfying Condition 1 .

• ∀s ≥ 0, µ(s) and σ(s) are adapted to the filtration of Fs;

Condition 21: ∀s ≥ 0, σ(s) is a linear operator from H to H, such that ∀a ∈

H, σ(s)a ∈ H and (σ(s)a)(·) = σ(s, ·)a(·).

No-arbitrage Drift Condition

To exclude arbitrage opportunity, we should impose the following relationship between

its drift and volatility under the risk-neutral measure:

Corollary 4. Under Condition 1 and Condition 2, the drift term of the forward

rate dynamics in (2.2) should be identified from the volatility and correlation kernel of

the Wiener process by the following equation:

µ(s, T ) = σ(s, T )

∫ T

s

σ(s, u)c(T, u)du (2.3)

1This condition has restrict the possible forward rate models by a great amount. It will make the
forward rate of any time to maturity, including short rate, to be driven by a single noise source, thus
can only produce a subset of finite factor HJM models as its special cases.
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Proof: Here we briefly rewrite the Goldstein(2000) result. By definition, zero-coupon

bond with maturity T will have price at time t:

P (t, T ) = e−
∫ T
t f(t,u)du.

Differentiating with respect to time t, we obtain:

dP (t, T )

P (t, T )
= r(t)dt−

∫ T

t

df(t, u)du+
1

2

[∫ T

t

df(t, u)du

]2

(2.4)

where r(t) = f(t, t) is the short rate at time t. From the fundamental theorem of

asset pricing, discounted asset price should be a martingale under risk-neutral measure.

Apply this to the discounted bond price we obtain:

d
{
e−

∫ t
0 r(u)duP (t, T )

}
e−

∫ t
0 r(u)duP (t, T )

=
dP (t, T )

P (t, T )
− r(t)dt

from which we can see that since discounted bond price is a martingale, the bond price

itself dP (t,T )
P (t,T )

should have a drift of short rate r(t). Apply this into the dt term of (2.4),

we get

∫ T

t

µ(t, u)du =
1

2

[∫ T

t

df(t, u)du

]2

Taking derivative with respect to term T, we can have

µ(t, T ) =

[∫ T

t

df(t, u)du

]
df(t, T )

=

∫ T

t

σ(t, u)dW(t, u)σ(t, T )dW(t, T )du

= σ(t, T )

∫ T

t

σ(t, u)c(u, T )du

18
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QED.

2.2.1 Finite-factor (rank) Approximation

From the finite rank approximation for infinite dimensional Wiener process section, we

have that: ∀ε > 0 there exists a positive constant K such that E(sup0≤s≤T |W(s) −

WK(s)|2) < ε, a.e. Then equation (2.2) can be approximated by:

df(s) = µ(s)ds+ σ(s)dW(s)

= µ(s)ds+ σ(s)
∞∑
k=1

√
γkekdwk(s)

≈ µ(s)ds+
K∑
k=1

σ∗k(s)dwk(s)

:= µ(s)ds+
K∑
k=1

σ∗k(s)dwk(s)

:= dfK(s) (2.5)

where σ∗k(s) =
√
γkσ(s)ek belongs to the Hilbert space H. Clearly fK follows the K-

factor HJM model, which is an approximation to the general infinite model. By speci-

fying the variance operator σ(s)ek = γ
− 1

2
k σ∗k(s), ∀k ≤ K and σ(s)ek = 0, ∀k > K, the

general model will be the K-factor HJM model exactly.
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If we look at the expected squared error of this approximation,

E|f(t)− fK(t)|2 = E|
∞∑

k=K+1

√
γk

∫ t

0

σ(s)ekdwk(s)|2

≤
∞∑

k=K+1

γk

∫ t

0

|σ(s)ek|2ds

≤
∞∑

k=K+1

γk

∫ t

0

||σ(s)||2Hds (2.6)

∀ fixed t, since
∫ t

0
||σ(s)2||Hds is finite and

∑∞
k=1 γk ≤ ∞, then E|f(t) − fK(t)|2 → 0,

as K → ∞. Or, we can also say that, ∀ fixed T , ∀ε, there ∃ K, s.t. supt≤T E|f(t) −

fK(t)|2 < ε.

This property that infinite dimensional Wiener process can be approximated by

a finite serial of one dimensional Wiener processes has laid ground for the success

of finite factor HJM models. This is equivalent to say the covariance of the Wiener

process can be approximated by a finite-ranked one. However, note that this is different

from the Longstaff, Santa-Clara and Schwartz (2001) and Han(2007), where instead

of finite factor approximation for instantaneous correlation matrix, they have used

principal component analysis technique in the covariance matrix of forward rate in

their implementation of the random field model in discrete time. In other words, they

used finite factors to approximate
∫ t+∆

t
σ(s)dW(s) instead of W(t + ∆)−W(t) as in

the current framework.

Comparing the two approaches, finite factors approximation for the standard Wiener

process will have the property that instantaneous correlation and variance functions

can be estimated separately. This is advantageous, since the market has a good feeling

about how instantaneous shock correlations and how variances across different maturity

look like. Also the estimated parameters are more interpretable. This is compatible

with LIBOR market model, where correlation and variance are sometimes specified
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and estimated separately. Of course, since covariance is what can be observed directly,

approximation aiming at it can usually have better fit in historical data, however, it

gives less insight into possible future movements and is less interpretable to users.

2.2.2 Full-rank Specification

Replacing W by a finite dimension WK is equivalent to say we would like to replace its

covariance Q by a lower ranked QK . However, besides principle component analysis to

approximateQ, which is finite ranked in nature, we can also approximate the correlation

kernel of the Wiener process, c(·, ·), by certain parametric functions. Instead of having

finite rank, the new correlation function will have full rank but controlled by only

finite parameters. This alternative has the advantage of being infinite factor, i.e. no

finite assets can complete the market even under deterministic volatility, but can still

be estimated. The disadvantage is that we have to resort to the more complex two-

dimensional stochastic analysis, which is not widely used in the finance literature. The

third section of this chapter will introduce some of the proposed full-rank functional

form for the correlation.

Special Note on Notations

In the following of this paper, we will denote finite dimension vector of Wiener process

as W (t), general Wiener process in the Hilbert space H as W(t), and one dimensional

Wiener Process as w(t). Depending on the situation for the Wiener Process, σ(t) will be

a vector of same length as W (t), it can also be a member of L(H,H) for the H-valued

W(t).
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2.3 Some Specific Models

2.3.1 Heath-Jarrow-Morton (HJM) Factor Model

Suppose W (t) is a n-dimensional Wiener process, otherwise under similar conditions of

last section, we have the following HJM forward rate model:

f(t, T ) = f(0, T ) +

∫ t

0

µ(s, T )ds+

∫ t

0

σ(s, T )TdW (s)

or equivalently in differentiate form,

df(s, T ) = µ(s, T )ds+ σ(s, T )TdW (s).

The short rate process under the model will be:

rt = f(t, t) = f(0, t) +

∫ t

0

µ(s, t)ds+

∫ t

0

σ(s, t)TdW (s)

and the differentiate form will be:

drt = µ(t, t)dt+ σ(t, t)TdW (t) +
∂f(t, T )

∂T
|T→t.

We can also derive the dynamics for the zero bond prices from Bt(T ) = e−
∫ T
t f(t,s)ds and

Ito’s lemma:
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d

∫ T

t

f(t, s)ds = −f(t, t)dt+

∫ T

t

df(t, s)ds

= −rtdt+

∫ T

t

µ(t, s)dt+ σ(t, s)TdW (t)ds

= −rtdt+

∫ T

t

µ(t, s)dsdt+

∫ T

t

σ(t, s)TdsdW (t)

:= −rtdt+ µ∗(t, T )dt+ σ∗(t, T )TdW (t)

=⇒

dBt(T ) = Bt(T ){−d
∫ T

t

ft(s)ds+
1

2
d2

∫ T

t

ft(s)ds}

= Bt(T ){rtdt− µ∗(t, T )dt− σ∗(t, T )TdW (t) +
1

2
σ∗(t, T )Tσ∗(t, T )dt}

which is equivalent to dBt(T )
Bt(T )

= (rt − µ∗(t, T ) + 1
2
σ∗(t, T )Tσ∗(t, T ))dt− σ∗(t, T )TdW (t)

No-arbitrage Condition

Under the equivalent martingale measure, the discounted bond price should be a mar-

tingale. Since dD(t) = −rtD(t)dt, then:

d(D(t)Bt(T ))

D(t)Bt(T )
= −rtdt+ (rt − µ∗(t, T ) +

1

2
σ∗(t, T )Tσ∗(t, T ))dt− σ∗(t, T )TdW (t)

= (−µ∗(t, T ) +
1

2
σ∗(t, T )Tσ∗(t, T ))dt− σ∗(t, T )TdW (t) (2.7)

Now from no-arbitrage, D(t)Bt(T ) need to be a martingale under the risk-neutral

measure, which means that the drift term in the above SDE should be 0. That will

give the drift condition for the factor HJM under risk-neutral measure:

µ∗(t, T ) =
1

2
σ∗(t, T )Tσ∗(t, T ) (2.8)
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We can also write the model in a random field framework as the following:

df(s, T ) = µ(s, T )ds+ σT (s, T )dW (s)

= µ(s, T )ds+
√
σT (s, T )σ(s, T )dW(s, T ) (2.9)

where dW(s, T ) = σT (s,T )dW (s)√
σT (s,T )σ(s,T )

can be seen as a string shock with correlation structure

dW(t, T1) dW(t, T2) =
σT (s, T1)σ(s, T2)√

σT (s, T1)σ(s, T1)
√
σT (s, T2)σ(s, T2)

dt

:= c(t, T1, T2) dt

Note that in this case, the correlation function of the shock between different terms T1

and T2 at time tmay depend on time t except the case when σk(t, T ) = σ0(t, T ) ek(T ), ∀k =

1, . . . , K. This is because Condition 2 has been imposed implicitly here.

2.3.2 Hull-White Model

With the assumption of short rate process under equivalent measure,

drt = (θ(t)− a(t)rt)dt+ σ(t)dW (t) (2.10)

Hull and White(1990) showed that the price for a zero-coupon bond with maturity time

T will be:

Pt(T ) = A(t, T )e−B(t,T )rt (2.11)
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The coefficients satisfy

B(t, T ) =
B(0, T )−B(0, t)

Bt(0, t)

lnA(t, T ) = ln
A(0, T )

A(0, t)
−B(t, T )

At(0, t)

A(0, t)
− 1

2
B2(t, T )B2

t (0, t)

∫ t

0

σ2(s)

B2
s (0, s)

ds

with initial values for A(0, T ), B(0, T ) determined by initial spot rate curve r0(T ) and

initial spot rate volatility σ0(T ),

B(0, T ) = r0(T )
σ0(T )

σ(0)
T

A(0, T ) = P0(T )eB(0,T )r0

Forward rate can be derived from bond prices. Pang(2000) has shown that:

cov(f(t1, T1), f(t2, T2)) = BT1(0, T1)BT2(0, T2)

∫ t1∧t2

0

σ2(s)

B2
s (0, s)

ds

≡ g(T1, T2)h(t1 ∧ t2) (2.12)

2.3.3 Some Special String Shocks

An important element of random field model is the construction of string shocks. Under

our framework of last section, it is equivalent to say we would like to specify the

correlation structure of the Wiener process. To construct the String shock, we can

assume the string to be a stochastic process along the T direction, or we can assume

the string has to satisfy some SPDE.
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Stochastic String follows O-U process

Suppose the string U(t) follows an Ornstein-Uhlenbeck(O-U) process

dU(t) = −κU(t)dt+ dB(t) (2.13)

where κ is a positive constant. Then the string has a solution that U(t) =
∫ t

0
e−κ(t−s)dB(s).

The covariance structure for this string will be like:

cov(U(t), U(s)) =
1

2κ
(e−κ|s−t| − e−κ(s+t)) (2.14)

and the correlation function will take the form: c(u, v) = e−κ(u−v)
√

1−e−2κv

1−e−2κu when u ≥ v.

Stochastic Strings as Solutions of SPDEs

If we assume that the stochastic string can be characterized by a linear second order

SPDE:

A(t, x)
∂2X(t, x)

∂t2
+ 2B(t, x)

∂2X(t, x)

∂t∂x
+ C(t, x)

∂2X(t, x)

∂x2

= H(t, x,X(t, x),
∂X(t, x)

∂t
,
∂X(t, x)

∂x
)

where we restrict our discussion to linear equations

H(t, x,X(t, x),
∂X(t, x)

∂t
,
∂X(t, x)

∂x
)

= D(t, x)
∂X(t, x)

∂t
+ E(t, x)

∂X(t, x)

∂x
+ F (t, x)X(t, x) + S(t, x)
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where S(t, x) is some random ”source” term. Santa-Clara and Sornette (2001) has

shown that the correlation between different term of the string takes the form of

c(x, y) =

∫ ∞
0

dzg(x, z)g(y, z) (2.15)

where g is some green function satisfying
∫∞

0
dz[g(x, z)]2 = 1, ∀x ≥ 0. They have shown

that such a function c(x, y) satisfies all the conditions for a correlation function and

also that any correlation can be written as c(x, y) with some suitable g(x, z) function.

Some Parametric Examples

Case 1: If we assume the form g(x, z) =
√
J(x)Iz[0, J(x)], where J(x) > 0,∀x. Then

we can have

c(x, y) =

√
J(x) ∧ J(y)

J(x) ∨ J(y)
.

For example,

• J(x) = x, so that c(x, y) =
√

x∧y
x∨y = e

1
2
|log(x)−log(y)|

• J(x) = e2κxa , so that c(x, y) = eκ|x
a−ya|

Case 2: If we take g(x, z)2 to be a probability density function of z, for example:

• g(x, z)2 = 1√
2π
e−

(z−a(x))2

2 , then c(x, y) = e−
1
8

(a(x)−a(y))2

These are all legitimate correlation function of the string shock.

Some Comments

1. Finite factor HJM is different from general random field model, in terms of hedg-

ing strategy;
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2. Compare multi-factor short rate model with random field model, if we impose

the constrain of Condition 2 on the volatility operator then we can only pro-

duce one-factor short rate model, but for general volatility, we can have infinite

dimensional short rate as well.

2.4 The Volatility Dynamics

A widely used general functional form for volatility is like:

σ(t, T ) = g(t, T )φ(f(t, T ))(V (t))γ.

where g(t, T ) and φ are some deterministic functions; γ is usually either 0 or 1
2
; and

V (t, T ) is a state variable follows some diffusion process. This volatility form will

produce Markovian forward rate curves, i.e. future movements for forward rate curve

only depend on the current curve and maybe some additional random components.

Some special cases will be discussed in the following subsections.

2.4.1 Deterministic

The simplest characterization of the volatility process will be assuming it to be a

deterministic function of current time t and time to maturity T , which equals the case

of φ(x) = 1 and γ = 0. This will result in a Gaussian model in t. Empirical evidence

has supported a hump shaped volatility structure along the time to maturity direction,

and this hump shape has been consistently observed over time. To accommodate this

fact, Rebonnato (1999) has suggested the use of a four parameters parametric model

for the volatility σ(t, T ) = g(T − t), which results in a special case of the one-factor

HJM model.
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The advantage of deterministic volatility is that we can always have analytical so-

lution for European call option (Cap). In fact, Kennedy (1994) has given the formula

of the Cap price under the general Gaussian random field case. What is more, we can

also match the initial term structure of volatility perfectly, and it can also produce

hump shaped volatility structure as time passes by. However, there are a couple of dis-

advantages too. For example, as time goes by even though it maintains a hump shape,

it won’t match the new volatility structure. That means it will have time dependent

parameters which need to be constantly re-calibrated to match market volatility data.

Another disadvantage is that the implied volatility will be flat as function of different

strike prices. This is not consistent with the empirical evidence that smile or skewed

shaped implied volatility curves are observed almost all the time. One of the solutions

to this latter problem will be introducing a stochastic volatility as we will introduce in

a later section.

Markovian Short Rate

Often times, we would like to price complex interest rate derivatives. One way of

pricing them is through the construction of short rate tree. However, for a general

volatility model, the corresponding tree structure is not necessarily recombining, which

will render very complex tree. There is a subset of deterministic volatility models where

the short rate process is Markovian, and thus a recombining tree can be constructed.

From

r(t) = f(t, t) =

∫ t

0

σ(u, t)

∫ t

u

σ(u, s)dsdu+

∫ t

0

σ(s, t)dW (s),

it can be seen that with the specification that σ(t, T ) = ξ(t)ψ(T ), the short rate process
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will be

r(t) = f(0, t) + ψ(t)

∫ t

0

ξ2(u)

∫ t

u

ψ(s)dsdu+ ψ(t)

∫ t

0

ξ(s)dW (s).

Note that in the one-factor case, it will degenerate to the general short rate model

proposed by Hull and White(1990). Since if we define the deterministic function A(t)

by:

A(t) := f(0, t) + ψ(t) ∈t0 ξ2(u)

∫ t

u

ψ(s)dsdu.

then we will have the familiar form

dr(t) = [A′(t) + ψ′(t)
r(t)− A(t)

ψ(t)
]dt+ ψ(t)ξ(t)dW (t) = [a(t) + b(t)r(t)]dt+ c(t)dW (t).

Ritchken and Sankarasubramanian(1995) Framework

This section will generalized the above Markovian Short Rate process to the case that

short rate may not necessarily Markovian, but it maybe a component of a higher-

dimensional Markovian process, and thus a recombining lattice tree can be built in

terms of this higher-dimensional process. This is proven in Ritchken and Sankarasub-

ramanian (1995) and is rephrased here:

For a one-factor HJM model, if the volatility function σ(t, T ) is differentiable w.r.t.

T, a necessary and sufficient condition for the price of any interest rate derivatives to

be completely determined by a two state Markovian process (r(.), φ(.))T is that the

following condition holds:

σ(t, T ) = σRS(t, T ) := η(t)e−
∫ T
t κ(x)dx,

where η is an adapted process and κ is an integrable deterministic function. In such a
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case, φ(t) will be

φ(t) =

∫ t

0

σRS(s, t)ds.

and zero-coupon bond price will be given by

P (t, T ) =
P (0, T )

P (0, t)
exp{−1

2
Λ2(t, T )φ(t) + Λ(t, T )[f(0, t)− r(t)]}

where Λ(t, T ) =
∫ T
t
e−

∫ u
t κ(x)dxdu.

Differentiate this vector, it can be seen that under this RS class of volatility, short

rate r evolves according to

d

 r(t)

φ(t)

 =

 µ(r, t)

η2(t)− 2κ(t)φ(t)

 dt+ +

 η(t)

0

 dW (t)

with

µ(r, t) = κ(t)[f(0, t)− r(t)] + φ(t) +
∂

∂t
f(0, t).

From these, we can see that η is just the instantaneous short rate volatility process.

2.4.2 Affine

Following affine factor model for Bond prices (Heston 1993), Collin-Dufresne and Gold-

stein (2003) has extended the affine term structure model to the random field model

(i.e. infinite factor model). By modeling the log-Bond prices to follow a random field

model with CIR type Factor volatility process, they produce analytical solution to a

wide range of derivatives, just like the finite factor affine model. These are achieved by

restricting the characteristic function of bond price process to be analytical, through

an affine factor CIR type dynamics for the innovation of volatility.
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Suppose we assume that the risk-neutral zero-coupon bond price to follow the pro-

cess that:

dP (s, T )

P (s, T )
= r(s)ds− σ(s, T )

√
Σ(s)dW(s, T ) (2.16)

where σ(s, T ) is an arbitrary deterministic function, W(s) = {W(s, T ), s ≤ T ≤ TMax}

is an infinite dimensional Wiener process with correlation kernel c(, ) and the volatility

state variable Σ(s) follows

dΣ(s) = κ(θ − Σ)ds+ ϑ
√

ΣdB(s) (2.17)

where B(s) is a finite-factor Brownian motion independent of the Wiener process W(s).

Collin-Dufresne and Goldstein (2003) has shown that under some regularity con-

ditions on the parameters of the model, the characteristic function of future log-bond

prices will be log-affine in terms of log-bond prices and volatility state variable of current

time. Let

ψt(α) := EQ
t [eα0Σ(T0)+

∑n
j=1 αj logP

Tj (T0)] (2.18)

ψ0
t (α) := EQ

t [e−
∫ T0
t rsdseα0Σ(T0)+

∑n
j=1 αj logP

Tj (T0)] (2.19)

Then it can be shown that:

ψt(α) = exp

(
M(t) +N(t)Σ(t) +

n∑
j=1

αjlog
P Tj(t)

P T0(t)

)

and

ψ0
t (α) = P T0(t)exp

(
M0(t) +N0(t)Σ(t) +

n∑
j=1

αjlog
P Tj(t)

P T0(t)

)
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Where the deterministic functions M,N,M0, N0 will be determined by a system of

ODE’s.

Note that, modeling Bond prices to follow Random Field process does not guarantee

that forward rate will follow a random field. However, by specifying the dynamics of

Bond prices, we would have automatically determined the dynamics of the forward rate

process.

2.4.3 Log-Gaussian Form

To ensure volatility to be always positive, another type of popular yet natural choice of

volatility is in the log form. In other word, instead of modeling volatility directly, we

take the log first and then model the log-volatility (as Gaussian) without the worry of

it being negative. A number of researchers have followed this route in their modeling

of both equity and fixed income products, e.g. Cheng et al (2008). Here we will follow

this log-formed formulation as well. Beside the requirement of forward rate to follow

random field process, we will model the log-volatility to follow Gaussian random field

as well:

log
(
σ2(t, T )

)
= h(t, T )

h(t, T ) = [α(t, T )− β(t, T ) h(t, T )] dt+ σh(t, T ) dW(t, T )

The intuition is similar to the requirement on forward rate, since the forward rate and

its volatility are both functions of their time to maturity. They should be looked at

in a general Hilbert space, and thus shall be modeled as random field. In chapter 3

and 4, we will introduce some specific random field model on both forward rate and its

volatility, and then propose an approximation method of pricing simple interest rate

option under these specifications.
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2.5 Market Completeness

2.5.1 Theory

A financial market place is said to be complete when a market exists with an equilib-

rium price for every asset in every possible state of the world.2 The notion of market

completeness has been closely related with hedging in the sense that, in a complete

market any contingent claim can be replicated by a portfolio of assets that already

exist in the market. When it comes to modeling, financial asset prices are usually mod-

eled as diffusion processes driven by Wiener processes and there is an informal principle

(Bensoussan 1984) that: to hedge against N sources of randomness one needs N non-

redundant securities besides the numeraire. According to this principle, in a N-factor

model the market can be completed by N non-redundant assets plus a bank account,

and any contingent claims (e.g. options) can be replicated and thus priced by the N

assets. In particular, for the bond market where there is a continuum of securities (for

different maturity dates), one can construct hedging strategies involving a continuum

of assets for any contingent claims. Nevertheless, Bjork et al (1997) has shown that

in general if we assume infinite factor random sources, e.g. a function valued Wiener

process or random field, one can hedge in the most favorable situation only a dense

subset in the space of contingent claims, and thus proposed the concept of approximate

completeness 3 as the fundamental concept. Various empirical findings in the litera-

ture provide examples of incomplete market. For instance, under the complete market

assumption it is possible to price options (caps and swaptions) accurately from stocks

(bonds); however, financial models calibrated based on stocks (bonds) alone cannot fit

2Definition quoted by OECD from IMF, 2003, External Debt Statistics: Guide for Compilers and
Users – Appendix III, Glossary, IMF, Washington DC

3Every contingent claim can be approached in a certain sense by a sequence of hedgeable claims.
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the option prices accurately, nor can they adequately explain the features exhibited

by them. To match empirical results better, researchers have proposed certain refined

models that result in incomplete markets with empirical evidences more consistent with

the real market. One such a strategy is to model the random source as a Levy process

with jumps added to the diffusive evolution. Another strategy is to introduce various

stochastic volatility (SV) models [e.g. Hull and White (1987), Heston (1993), Scott

(1997), etc.] that contain sources for randomness driving the volatility structure in

addition to those driving asset prices directly. Both jump diffusion models and SV

models create incomplete markets. SV models were introduced for bond markets, e.g.

in Chiarella and Kwon (2000), Wiener processes drive both the forward rate process

and the volatility process. Such an approach is analogous to those SV counterparts for

the equity market.

Random field term structure models (string models) consist of infinite factors to

which the traditional HJM framework is a special case with infinite states but finite

factors. As was commented in Goldstein (2000), a random field model generally implies

the existence of an infinite number of economic factors, and hence no riskless portfolio

can be constructed if only bonds of different maturities are used. Thus, rather than

identifying the risk-neutral measure, which is not unique in this setting, we assume

its existence (as otherwise there would exist arbitrage opportunity in the market) and

write down the dynamics of the forward rates as fundamental under this measure so

that various fixed-income derivatives can be priced. Furthermore, the term structure

model we adopt in this dissertation consists of two random fields (with or without cor-

relations between them), one for the forward rate and the other for stochastic volatility.

Therefore, it makes the market incomplete, the risk-neutral measure non-unique, and

the non-identifiability issue inevitable. We have to follow the aforementioned approach

in Goldstein (2000) to assume that the risk-neutral dynamics follow a certain martingale
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measure Q.

2.5.2 Empirical Studies

The main question in the studies of empirical option pricing is: Which risk-neutral

measure gives rise to samples that look consistent with real data collected in the bond

and related option markets? Such an issue may involve estimating model parameters,

some of which correspond to the risk premia.

There is a large literature for calibration of SV models in equity markets using both

asset returns and option data. E.g. Renault and Touzi (1996) showed the natural fit

between implied volatility smile and SV model; Cheng et al (2008) used both stock

and option prices to calibrate their model. Similar contributions were made to fit HJM

finite factor models, e.g., Casassus, Collin-Dufresne and Goldstein (2005), Trolle and

Schwartz (2009). In contrast, empirical studies in random field models are not well

developed. There are plenty of challenges in this area. For one thing, bonds alone

cannot complete the bond market. As remedies, Han (2007) included swaption data

in his model; Jarrow, Li and Zhao (2007) calibrated their model with cap skew data;

Trolle and Schwartz (2009) used both cap and swaption; Collin-Dufresne, Goldstein

and Jones (2009) documented the so called unspanned stochastic volatility; Longstaff,

Santa-Clara and Schwartz (2001) studied the relative valuation of cap and swaption

and found that cap prices periodically deviate significantly from the no-arbitrage values

implied by the swaption market and thus neither of them should be omitted from the

model calibration. All of these implied that fixed-income derivatives such as caps

and swaptions contain needed information to explain market behaviors that cannot be

accomplished by using bonds alone.

Considering the non-identifiability issue regarding SV random field term structure

models, and following the approximate completeness approach in Bjork et al (1997), it is
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necessary to resort to good approximation schemes when calibrating a SV random field

term structure model. This amounts to dimension reduction in the sense of choosing

finite factors and performing inference on the proxy. Such an approach is illustrated in

Han (2007) and Trolle and Schwartz (2009), and will also be our direction of effort into

the next phrase of model calibration. Han (2007) started under risk neutral measure

with a random field model for Zero bond prices with random covariance, but then had to

reduce dimension to finite factors by keeping the first several principal components for

implementation. Furthermore, to bridge the risk neutral measure (for option pricing)

with the physical measure (for estimation), he chose a special form of market price of

risk process such that the structure of the bond price and volatility processes remain

the same under both measures. This process of starting with models under risk neutral

measure and then pick a convenient risk premium process represent a typical path of

model calibration for a SV model, including Trolle and Schwartz (2009) which, as far as

I am aware, is the most general factor SV HJM model that incorporates a wide range

of option data.
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Chapter 3

Option Pricing in Random Field

Model with Random Field Volatility

Options on interest rate have been actively traded in the market, with interest rate

cap beng one of the most popular. An interest rate cap is a derivative from which the

buyer has the option to receive a series of payments at the end of each period, specified

in the contract, during which the interest rate exceeds the agreed strike rate. E.g. an

agreement to receive payments for each month the monthly LIBOR rate exceeds 2.5%

for the next 12 months. A cap usually consists of a series of such options for successive

time periods, but it suffices to consider just one period which is called a caplet, since

the payoff or price for a cap will simply be the sum of these one period caplets. In this

chapter, we will study the pricing of cap under random field forward rate model with

random field volatility. For simplicity, what we call cap in the rest of the dissertation

will only be for one period and thus essentially is a caplet.

To price a cap, we need first to look at the payoff at the maturity date of the cap,

which will depend on the forward rate curve at that moment. Now let’s look at it

mathematically: ∀0 ≤ s ≤ t, let f(s, t) be the instantaneous forward rate at time s
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with maturity of time t. For 0 ≤ s ≤ t < t+ ∆ ≤ T , let

f∆(s, t) = ∆−1

∫ t+∆

t

f(s, u) du (3.1)

then f∆(s, t) will be the effective interest rate that can be locked in at time s and

effective for the period [t, t + ∆]. Consider an interest rate cap with strike rate K for

the period [t, t+∆], which can be regarded as a European option on f∆(s, t), the holder

will exercise the option at time t if f∆(t, t) > K, this will yield a payoff at t+ ∆ of

(
(e∆ f∆(t,t) − 1)− (e∆K − 1)

)+

=
(
e∆ f∆(t,t) − e∆K

)+

.

From the fundamental theorem of asset pricing, the cap price at time 0 will be the

expected discounted payoff of the option under the risk-neutral measure:

EQ

{
exp

(
−
∫ t+∆

0

r(u) du

) (
e∆ f∆(t,t) − e∆K

)+
}
. (3.2)

In this chapter, we will discuss the pricing of cap under a random field forward rate

model with random field volatility. We start with a random field forward rate model

with deterministic volatility in section 1, under which Kennedy (1994) has derived a

closed form formula for cap price. Utilizing his result and the law of iterated expecta-

tion, in section 2 we will show that cap price under a random field volatility will simply

be an expected price conditioning on the past and the future movements of volatility.

Then we will propose an approximation scheme in section 3 to facilitate the calculation

of the expectation. After that in section 4, we will use simulation to study the accuracy

and efficiency of this approximation and further talk about the effects of some model

parameters. Note that, in this chapter we will assume independent noises between for-

ward rates and their volatilities. The correlated case, which might be more realistic in
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real market, is a much more complex problem and will be discussed in the next chapter.

3.1 Option Pricing under Gaussian Random Field

Forward Rate Model

Under Gaussian Random Field Model, i.e. deterministic volatility structure, Kennedy

(1994) has derived a closed form formula for Caplet, which is essential an European

style put option on zero coupon bond. Here we briefly rewrite his result:

Under the settings of last chapter and also the Condition 1-2, we consider a

random field model on forward rate under risk-neutral measure as

f(t, T ) =

∫ t

0

µ(s, T )ds+

∫ t

0

σ(s, T )dW(s, T )

where

• W(s)(·) = {W(s, s + u), 0 ≤ u ≤ Tmax} is a Wiener process taking values in

the Hilbert space H = C[0, Tmax] = {All continuous functions on [0, Tmax] } with

deterministic kernel function c(·, ·) for its covariance operator.

• f(t, T ) = f(t)(T − t) and W(t, T ) = W(t)(T − t), where T is the maturity time,

0 ≤ t ≤ T ≤ t+ Tmax and T − t is the time to maturity.

• dW(s, u) dW(s, v) = c(u, v)ds and dW(s, u) dW(t, v) = 0, ∀s 6= t.

• σ(s, T ) is deterministic, and µ(s, T ) satisfies the no-arbitrage condition

µ(s, T ) = σ(s, T )

∫ T

s

σ(s, u)c(T, u)du
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.

Corollary 5. The time 0 price of a cap with strike price K between the period [t, t+∆]

from expectation (3.2) is given by

C(0, σ2
t )

= exp

[
−
∫ t+∆

0

f(0, u) du

] {
exp

[∫ t+∆

t

f(0, u) du

]
Φ(b(σt) + σt/2)

− e∆K Φ(b(σt)− σt/2)
}

(3.3)

where Φ is the cdf of N(0, 1) distribution, b(σt) =
[∫ t+∆

t
f(0, u) du−∆K

]
σ−1
t , and

the variance

σ2
t = V ar

(∫ t+∆

t

f(t, u) du

)
=

∫ t+∆

t

∫ t+∆

t

∫ t

0

σ(u, v1)σ(u, v2)c(v1, v2) du dv1 dv2. (3.4)

Proof: Let N1 = ∆f∆(t, t) =
∫ t+∆

t
f(t, u)du and N2 =

∫ t+∆

0
Rudu =

∫ t+∆

0
f(u, u)du

then

N1 =

∫ t+∆

t

f(0, u)du+

∫ t+∆

t

∫ t

0

µ(u, v)dudv +

∫ t+∆

t

∫ t

0

σ(u, v)duW(u, v)dv,

N2 =

∫ t+∆

0

f(0, u)du+

∫ t+∆

0

∫ v

0

µ(u, v)dudv +

∫ t+∆

0

∫ v

0

σ(u, v)duW(u, v)dv

and (N1, N2)T is a bivariate normal vector. The price of the cap from the expectation

(3.2) can be shown as:

E
[
e−N2(eN1 − e∆K)+

]
= eE(N1−N2)+

V ar(N1−N2)
2 Φ(

E(N1) + V ar(N1)− Cov(N1, N2)−∆K√
V ar(N1)

)

−e∆K−E(N2)+
V ar(N2)

2 Φ(
E(N1)− Cov(N1, N2)−∆K√

V ar(N1)
) (3.5)
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From the no arbitrage drift condition and the assumption that dW(u1, v1) dW(u2, v2) =

c(v1, v2)I{u1=u2}du1, we can obtain the mean, variance and covariance between N1 and

N2:

EN1 =

∫ t+∆

t

f(0, u)du+

∫ t+∆

t

∫ t

0

σ(u, v1)

∫ v1

u

σ(u, v2)c(v1, v2)dv2dudv1

EN2 =

∫ t+∆

0

f(0, u)du+

∫ t+∆

0

∫ v1

0

σ(u, v1)

∫ v1

u

σ(u, v2)c(v1, v2)dv2dudv1

V ar(N1) =

∫ t+∆

t

∫ t+∆

t

∫ t

0

σ(u, v1)σ(u, v2)c(v1, v2)dudv1dv2

V ar(N2) =

∫ t+∆

0

∫ t+∆

0

∫ v1∧v2

0

σ(u, v1)σ(u, v2)c(v1, v2)dudv1dv2

Cov(N1, N2) =

∫ t+∆

0

∫ t+∆

t

∫ v1∧t

0

σ(u, v1)σ(u, v2)c(v1, v2)dudv1dv2

Substitute the above results into (3.5) will give equation (3.3). QED.

3.2 Random Field Forward Rate with Random Field

Volatility

Instead of being deterministic if we assume volatility to follow a random field process,

the forward rate process under the risk-neutral measure Q satisfies

df(t, T ) = µ(t, T ) dt+ σ(t, T ) dW1(t, T ), (3.6)

d logσ2(t, T ) = [α− β logσ2(t, T )] dt+ σh dW2(t, T ), (3.7)
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where α, β and σh ∈ H are continuous deterministic functions of time and time to

maturity and {Wi(t, ·)}, i = 1, 2 are two independent Wiener processes with covariance

kernels ci(·, ·), respectively, that satisfy the following correlation structures:

(i) dWj(t, T1) dWj(t, T2) = cj(T1, T2) dt, j = 1, 2, ∀ t ≤ min{T1, T2}; in particular,

cj(T, T ) = 1, j = 1, 2.

(ii) dWj(s, T1) dWj(t, T2) = 0, j = 1, 2, ∀s 6= t, with max{s, t} ≤ min{T1, T2}.

(iii) {W1(t, T )} and {W2(t, T )} are independent.

Note that (3.6) — (3.7) form a SV model with white noise shocks. But pricing bond

derivatives may become much more difficult with this model for a number of reasons.

Consider an European call option, written on the zero-coupon bond, with maturity

τ ∈ [t, T ] and strike price K. Its time t price can be formally expressed as

C(t, τ, T ) = EQ
t

{
exp

[
−
∫ τ

t

r(u)du

]
[P (τ, T )−K]+

}
. (3.8)

First, the forward rate process {f(u, T )} will determine the short rate {r(u)} and the

bond price {P (u, T )} in (3.8). Second, no generalized Black-Scholes (GBS) formulas

are available for computing C(t, τ, T ). In theory, the conditional expectation in (3.8)

is still a high-dimensional integral and could be calculated via brute force Monte Carlo

simulation. But this is totally impractical when such numerical integration needs to be

performed repeatedly in an iterative calibration algorithm. We propose to approximate

C(t, τ, T ) based on an expectation over a low-dimensional (joint) density. With an

adequate proxy density, we can work out certain cases with specific correlation functions

in the model (3.6) — (3.7). The reason for us to study the model (3.6) — (3.7) is that it

has similar features to some previously studied SV models, and it does not entertain a

closed-form solution for bond pricing by using the Fourier inversion method introduced
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in Heston (1993). Therefore, bond pricing with this model certainly requires some novel

probability approximation schemes.

The forward rates {f(t, T )} in Kennedy (1994) form a Gaussian field. Following

(3.6), we have

f(t, T ) = f(0, T ) +

∫ t

0

µ(u, T ) du+

∫ t

0

σ(u, T ) dW1(u, T ) (3.9)

which is not Gaussian. Instead, {f(t, T )} conditioning on {σ(t, T )} is a Gaussian field

with mean

m(t, T ) = f(0, T ) +

∫ t

0

µ(u, T ) du

variance

V (t, T ) =

∫ t

0

σ2(u, T ) du,

and covariance

c(t1 ∧ t2, T1, T2) , Cov(f(t1, T1), f(t2, T2))

= Eh

{∫ t1∧t2

0

σ(u, T1) dW1(u, T1) ·
∫ t1∧t2

0

σ(u, T2) dW1(u, T2)

}
=

∫ t1∧t2

0

σ(u, T1)σ(u, T2) c1(T1, T2) du,

where Eh(·) denotes the conditional expectation [of the white noise processes {Wi(t, T )},

i = 1, 2] given the stochastic volatility {σ(t, T )}.

Condition for no arbitrage

The No-arbitrage condition in this case from (2.3) will be:

µ(s, T ) = σ(s, T )

∫ T

s

σ(s, u)c1(T, u)du (3.10)
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3.2.1 Cap Price Formula

Here let’s see how to price option under this more general framework. Conditioning on

the history of volatility structure, our current model will be Gaussian. Making use of

the result of Corollary 5, the time 0 price of the above cap is given by

C(0, σ2
t )

= exp

[
−
∫ t+∆

0

f(0, u) du

] {
exp

[∫ t+∆

t

f(0, u) du

]
Φ(b(σt) + σt/2)

− e∆K Φ(b(σt)− σt/2)
}
, (3.11)

where Φ is the cdf of N(0, 1) distribution, b(σt) =
[∫ t+∆

t
f(0, u) du−∆K

]
σ−1
t , and

the conditional variance

σ2
t = V ar

(∫ t+∆

t

f(t, u) du | h(s, t) : 0 ≤ s ≤ t ≤ T

)
= 2

∫ t+∆

t

∫ v2

t

∫ t

0

σ(u, v1)σ(u, v2) c1(v1, v2) du dv1 du2. (3.12)

3.2.2 A Probability Approximation Scheme for the Distribu-

tion of Summary Statistic σ2
t

(3.6) and (3.7) differ from Kennedy’s model due to the presence of the stochastic volatil-

ity factor in (3.7). To extend the pricing formula (3.3), a natural attempt is to define

the cap price by

C(0) = E[C(0, σ2
t )], (3.13)

where the expectation is taken over σ2
t under the risk neutral measure and can be

computed via Monte Carlo numerical integration. Note that σ2
t is a function of latent

volatility field {σ(t, T )}. The standard brute force simulation is to generate a large

number of future volatility sample paths, calculate σ2
t and C(0, σ2

t ) over each path,
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then take a sample average as a proxy of C(0). Such a method would work if pricing

is the ultimate goal. However, in model calibration and related problems, derivative

prices have to be calculated repeatedly at every site (t, T ) and in every iteration of an

iterative algorithm (e.g. MCMC). Alternative methods to the brute force simulation

are clearly needed to alleviate the computational intensity. See Cheng et al. (2008)

for a recently proposed Gaussian approximation scheme. In this paper, we follow the

same idea but propose to adopt a log-normal approximate distribution for σ2
t . Here is

an outline of the proposed procedure:

Step 1 Compute the first and second moments of σ2
t . Certain low-dimensional nu-

merical integration is required in this step.

Step 2 Convert the two moments to the two parameters (η1, η2) in log-normal distri-

bution.

Step 3 Compute the expectation E[C(0, σ2
t )] with respect to the approximate log-

normal density obtained in Step 2, hence get an approximate price C(0).

The appeal of this approach is to reduce the dimensionality in Monte Carlo from at least

several hundreds (the total number of components of the volatility field {h(t, T )}) to one

(a single log-normal random variable) and still maintain the accuracy to a satisfactory

degree. In what follows, we provide details in those three steps.

3.2.3 Moments of σ2
t

The log-volatility as the solution to (3.7) is an Ornstein-Uhlenbeck (O-U) process

logσ2(t, T ) = e−
∫ t
0 β(s,T )dslogσ2(0, T )+

∫ t

0

e−
∫ t
u β(s,T )dsα(u, T )du+

∫ t

0

e−
∫ t
u β(s,T )dsσh(u, T )dW2(u, T ).

(3.14)
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For fixed v1 and v2, ∀ u ≤ v1 ≤ v2 the random exponent in (3.12),

gv1,v2(u) ,
1

2
[logσ2(u, v1) + logσ2(u, v2)]

=
1

2

[
e−

∫ u
0 β(s,v1)dslogσ2(0, v1) + e−

∫ u
0 β(s,v2)dslogσ2(0, v2)

]
+

1

2

[∫ u

0

e−
∫ u
τ β(s,v1)dsα(τ, v1)dτ +

∫ u

0

e−
∫ u
τ β(s,v2)dsα(τ, v2)dτ

]
+

1

2

[∫ u

0

e−
∫ u
τ β(s,v1)dsσh(τ, v1)dW2(τ, v1) +

∫ u

0

e−
∫ u
τ β(s,v2)dsσh(τ, v2)dW2(τ, v2)

]

is a Gaussian process in index u with mean

E [gv1,v2(u)] =
1

2

[
e−

∫ u
0 β(s,v1)dslogσ2(0, v1) + e−

∫ u
0 β(s,v2)dslogσ2(0, v2)

]
+

1

2

[∫ u

0

e−
∫ u
τ β(s,v1)dsα(τ, v1)dτ +

∫ u

0

e−
∫ u
τ β(s,v2)dsα(τ, v2)dτ

]
,

variance

V ar [gv1,v2(u)] =
1

4

[∫ u

0

e−2
∫ u
τ β(s,v1)dsσ2

h(τ, v1)dτ +

∫ u

0

e−2
∫ u
τ β(s,v2)dsσ2

h(τ, v2)dτ

+2

∫ u

0

e−
∫ u
τ [β(s,v1)+β(s,v2)]dsσh(τ, v1)σh(τ, v2)c2(v1, v2)dτ

]
,

and covariance ( for u1 ≤ v11 ≤ v21 and u2 ≤ v12 ≤ v22 )

Cov (gv11,v21(u1), gv12,v22(u2))

=
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v11)+β(s,v12)]dsσh(τ, v11)σh(τ, v12)c2(v11, v12)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v11)+β(s,v22)]dsσh(τ, v11)σh(τ, v22)c2(v11, v22)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v12)+β(s,v21)]dsσh(τ, v12)σh(τ, v21)c2(v12, v21)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v12)+β(s,v22)]dsσh(τ, v12)σh(τ, v22)c2(v12, v22)dτ
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Next we derive the first and second moments of σ2
t , based on which numerical compu-

tation of C(0) will be carried out.

Proposition 1. Under the setting of (3.6) – (3.7) , we have

Eσ2
t = 2

∫ t+∆

t

∫ v2

t

c1(v1, v2)

∫ t

0

exp[H1(u, v1, v2)] du dv1 dv2 (3.15)

E(σ2
t )

2 = 4

∫ t+∆

t

∫ t+∆

t

∫ v22

t

∫ v21

t

c1(v11, v21) c1(v12, v22) (3.16)∫ t

0

∫ t

0

exp[H2(u1, u2, v11, v12, v21, v22)] du1 du2 dv11 dv12 dv21 dv22,

where for u ≤ v1 ≤ v2, u1 ≤ v11 ≤ v21 and u2 ≤ v12 ≤ v22 we have

H1(u, v1, v2) = E [gv1,v2(u)] +
1

2
V ar [gv1,v2(u)] (3.17)

=
1

2

[
e−

∫ u
0 β(s,v1)dslogσ2(0, v1) + e−

∫ u
0 β(s,v2)dslogσ2(0, v2)

]
+

1

2

[∫ u

0

e−
∫ u
τ β(s,v1)dsα(τ, v1)dτ +

∫ u

0

e−
∫ u
τ β(s,v2)dsα(τ, v2)dτ

]
+

1

8

[∫ u

0

e−2
∫ u
τ β(s,v1)dsσ2

h(τ, v1)dτ +

∫ u

0

e−2
∫ u
τ β(s,v2)dsσ2

h(τ, v2)dτ

]
+

1

4

∫ u

0

e−
∫ u
τ [β(s,v1)+β(s,v2)]dsσh(τ, v1)σh(τ, v2)c2(v1, v2)dτ
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and

H2(u1, u2, v11, v12, v21, v22) (3.18)

= E [gv11,v21(u1)] + E [gv12,v22(u2)] +
1

2
V ar [gv11,v21(u1)] +

1

2
V ar [gv12,v22(u2)]

+ Cov (gv11,v21(u1), gv12,v22(u2))

= H1(u1, v11, v21) +H1(u2, v12, v22)

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v11)+β(s,v12)]dsσh(τ, v11)σh(τ, v12)c2(v11, v12)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v11)+β(s,v22)]dsσh(τ, v11)σh(τ, v22)c2(v11, v22)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v12)+β(s,v21)]dsσh(τ, v12)σh(τ, v21)c2(v12, v21)dτ

+
1

4

∫ u1∧u2

0

e−
∫ u1∧u2
τ [β(s,v12)+β(s,v22)]dsσh(τ, v12)σh(τ, v22)c2(v12, v22)dτ

Proof: The fact that gv1,v2(u) is Gaussian implies

Eσ2
t = 2

∫ t+∆

t

∫ v2

t

c1(v1, v2)

∫ t

0

E {exp[gv1,v2(u)]} dudv1dv2

= 2

∫ t+∆

t

∫ v2

t

c1(v1, v2)

∫ t

0

exp{Egv1,v2(u) + V ar[gv1,v2(u)]/2} dudv1dv2.

Hence (3.15) and (3.17) follow from (3.15) and (3.15). By the same token, (3.16) and

(3.18) follow from (3.15), (3.15) and (3.15). QED.

3.3 Numerical Study

In this section, we perform simulation study to check the speed and accuracy of the

proposed approximation method. Also, we will examine the effect of model parameters.

For simplicity, we will consider α, β and σh to be constants instead of functions in this

section.

49



www.manaraa.com

3.3.1 Simulation of the Distribution of σ2
t by Monte Carlo

Method

since

σ2
t = V ar(

∫ t+δ

t

fu(t)du) = 2

∫ t+δ

t

du

∫ u

t

∫ t

0

σ(s, u)σ(s, ν)c1(u, ν)dsdν

where

logσ2(t, T ) = e−βtlogσ2(0, T ) +
α

β
(1− e−βt) + σe−βt

∫ t

0

eβsdW2(s, T )

Then

gu,ν(s) = (logσ2(s, u) + logσ2(s, ν))/2

=
α

β
+ e−βs(

logσ2(0, u) + logσ2(0, ν)

2
− α

β
) + σe−βs

∫ s
0
eβydW2(y, u) +

∫ s
0
eβydW2(y, ν)

2

=
α

β
+ e−βs(

logσ2(0, u) + logσ2(0, ν)

2
− α

β
) + σe−βsXu,ν(s)

:= a(s, u, v) + b(s)Xu,ν(s) (3.19)

Where

a(s, u, v) =
α

β
+ e−βs(

logσ2(0, u) + logσ2(0, ν)

2
− α

β
)

b(s) = σe−βs

and

Xu,ν(s) =

∫ s
0
eβydW2(y, u) +

∫ s
0
eβydW2(y, ν)

2
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satisfies Xu,ν(s+ ds)−Xu,ν(s) ⊥ Xu,ν(s) and Xu,ν(s+ ds)−Xu,ν(s) ∼ N(0,Σs) with

{Σs}i,j = [c2(ui, vi) + c2(ui, vj) + c2(vi, uj) + c2(vi, vj)]

∫ s+ds

s

e2βτdτ

This property of independent and Gaussian increment of Xu,ν(s) will be used in its

simulation:

• Discretize the triangular plane t <= v <= u <= T into equally spaced grid

points and combine the points into a vector variable X(s) =

(Xu1,u1(s), Xu2,u1(s), Xu2,u2(s), . . . , XuN ,u1(s), . . . , XuN ,uN (s))′

• Initial value X(0) = 0;

• X(si+1) − X(si) will be a vector of correlated Gaussian variables with Mean 0

and Variance-Covariance matrix Σsi ;

• Repeat the last step, we can obtain X(si) =
∑i

j=1(X(sj+1)−X(sj)) and further

gu,ν(si) = a(si, u, v) + b(si)X
u,ν(si)

• A sample from the discretized σ2
t distribution can be obtained as

2
∑

i

∑i
j=1

∑
k exp(gui,uj(sk))c1(ui, uj)(∆u)2∆s

• Computation complexity will be O(MN4), where M is the number of grid points

between 0 and t and N is the number of points between t and T

3.3.2 Pricing Errors

Pricing by Monte Carlo(MC) and log-normal approximation:

1. Simulate samples of σ2
t (here sample size n=10000) following last subsection;
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2. Generate samples from log-normal distribution with the moments calculated from

section 2.3;

3. Compute C(0, σ2
t ) using σ2

t from the last two steps and then take the average

separately to get two prices for the same contract; where

C(0, σ2
t ) = e−

∫ t+∆
0 fu(0)du

{
e
∫ t+∆
t fu(0)duΦ(

∫ t+∆

t
fu(0)du−∆d

σt
+
σt
2

)

−e∆dΦ(

∫ t+∆

t
fu(0)du−∆d

σt
− σt

2
)

}

4. Compare the two prices, report the relative pricing error for the setup;

5. Change parameter values and repeat the last four steps.

The price differences between MC method and L-N approximation PD
MC −PLN can

be decomposed as the sum of approximation error PD
MC − PD

LN and discretization error

from MC PD
LN −PLN . Here PD

MC = E[C(0, (σDMC)2)] is the option price calculated from

the MC draws of σDMC ; PD
LN = E[C(0, (σDLN)2)] is the option price calculated from a

L-N distributed variable (σDLN)2 with the same first two moments equal to those of the

(σDMC)2, and PLN = E[C(0, σ2
LN)] is the option price from a L-N distributed variable

σ2
LN with first two moments calculated from last section.

Discretization Error from MC PD
LN − PLN

Since the first two moments of a L-N distributed variable (σDLN)2 converge to the cor-

responding moments of r.v. σ2
LN , (σDLN)2 will converge to σ2

LN in distribution. Fur-

ther because function C(0, .) is bounded and continuous, C(0, (σDLN)2) will converge to

C(0, σ2
LN) in distribution as well. Then we have the result that Discretization Error

PD
LN −PLN = E[C(0, (σDLN))2]−E[C(0, σ2

LN)] will converge to 0, as step size converges

52



www.manaraa.com

to 0.

Approximation Error PD
MC − PD

LN

Take Taylor’s expansion around the first moment of σ2
t (denoted as σ2):

C(0) = C(0, σ2) + C(1)(0, σ2) E(σ2
t − σ2) +

1

2
C(2)(0, σ2) E(σ2

t − σ2)2 (3.20)

+
1

6
E
[
C(3)(0, ξ) (σ2

t − σ2)3
]

Since (σDMC)2 and (σDLN)2 have the same first two moments, the first three terms in

PD
MC = E[C(0, (σDMC)2)] and PD

LN = E[C(0, (σDLN)2)] are the same. Then we can con-

clude that approximation error PD
MC − PD

LN will be purely from the difference between

the last term. See Section 3.4 for the detailed formula for this term. Naturally, the

approximation error from using log-normal instead of true distribution of σ2
t will be

small, if either the distribution of σ2
t is close to log-normal or function C(0, σ2

t ) is ac-

tually not far from quadratic form. Results from simulation study have shown that

approximation error usually is very small in our setting.

Pricing Error from Simulation

We have actually carried out some simulations to check the above statement. It has

been shown that, as we reduce step size, price differences between Monte Carlo and

approximation have been gradually reduced to around 2% of the Cap price when com-

putation complexity has prevented a further step size reduction. Of the 2% price

difference (RMSE), only a very small portion (ApproxErr) is due to approximation

error while the vast majority is due to discretization error. The result of the simulation

study has also indicated that in order to have small enough discretization error from

brute force Monte Carlo method, very fine grid points are necessary which may be
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Table 3.1: Price differences from different correlation parameter ki, where ci(u, v) =
e−ki|u−v|. Here, PLN is the price from approximated LN distribution with matching
mean and variance to σ2

t ; P
D
MC is the price from the Monte Carlo samples as σ2

t ; P
D
LN

is the price from approximated LN distribution with the sample mean and variance
matching the Monte Carlo samples of σ2

t ; RMSE is the square-root of average squared
difference between PLN and PD

MC ; TotalErr is the ratio of RMSE and PD
MC ; AppoxErr

is the ratio between PD
MC − PD

LN and PD
MC . Other parameters values are chosen to be:

α = −2, β = 1, σh = 1; and the price of a at-the-money cap with t = 1 and T = 1.25
is considered and priced; procedures described in section 3.3.1 have been used to draw
samples using Monte Carlo method, with sample size of 50,000; 200 grid points have
been using between 0 and t, and 200 grids have been chosen between t and T.

k1 k2 PLN PD
MC PD

LN RMSE TotalErr AppoxErr
−8 -1 3.17 3.24 3.24 .076 2.35% < .1%
−4 -1 3.61 3.68 3.68 .076 2.07% < .1%
−2 -1 3.88 3.96 3.96 .081 2.05% < .1%
−1 -1 4.03 4.12 4.12 .087 2.11% < .1%
−0.5 -1 4.12 4.20 4.20 .083 1.98% .1%
−0.25 -1 4.16 4.25 4.25 .086 2.02% < .1%
−0.125 -1 4.18 4.27 4.27 .086 2.01% < .1%

0 -1 4.21 4.29 4.29 .087 2.02% .1%
−1 -8 4.02 4.10 4.10 .083 2.02% < .1%
−1 -4 4.03 4.11 4.11 .083 2.01% < .1%
−1 -2 4.03 4.12 4.12 .084 2.03% < .1%
−1 -1 4.03 4.12 4.12 .087 2.11% < .1%
−1 -0.5 4.04 4.12 4.12 .082 1.99% .1%
−1 -0.125 4.04 4.12 4.12 .087 2.11% < .1%
−1 0 4.04 4.12 4.12 .084 2.04% .2%

beyond even the modern computational power, while we can bypass the discretization

step by approximating the distribution of the summary statistic from its first couple of

moments.

Effect of Correlation Parameters

It can be seen from Table 1 that, the larger the correlation among forward rates (as

controlled by k1) the larger the Cap price will be, given other conditions the same. The

rationale for this might be explained from the formula of first moment of σt. Where a
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smaller k1 will make the integrand smaller. A possible economical explanation will be

that when all shocks to rates of different maturities are highly correlated, the average

rate between t and T should be more volatile thus the option should be more valuable.

Similar explanation applies to the correlation (as controlled by k2) for the volatility

field. However, it can be seen that option price is sensitive to the value of k1 while

being very insensitive to the value of k2. It shows that a more careful modeling for

the correlation among shocks to forward rates might be worth pursuing, while we may

model the correlation among volatilities less accurately without losing much.

3.4 Why the Approximation Works?

Consider the 1D case with no leverage effect, so our proposed approximation scheme

focuses on the distribution of σ2
t .

Recall (3.13), the cap price at time t = 0:

C(0) = E[C(0, σ2
t )],

where the expectation is taken over σ2
t under the risk neutral measure and can be

computed via Monte Carlo numerical integration. Let σ2 = Eσ2
t and C(k)(0, v) =

∂kC(0,σ2
t )

∂(σ2
t )k

∣∣∣
σ2
t=v

. We have the Taylor expansion around σ2:

C(0) = C(0, σ2) + C(1)(0, σ2) E(σ2
t − σ2) +

1

2
C(2)(0, σ2) E(σ2

t − σ2)2 (3.21)

+
1

6
E
[
C(3)(0, ξ) (σ2

t − σ2)3
]

where ξ is between σ2
t and σ2. Notice the second term in (3.21) vanishes, and the

leading term C(0) = C(0, σ2) is just the pricing formula in Kennedy (1994). Here is our
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extension of Kennedy’s result: first, a second-order correction term 1
2
C(2)(0, σ2) E(σ2

t −

σ2)2 is added; however, we go beyond the approximation

C(0) ≈ C(0, σ2) +
1

2
C(2)(0, σ2) E(σ2

t − σ2)2

by incorporating some skewness corrections in the term 1
6
E
[
C(3)(0, ξ) (σ2

t − σ2)3
]
.

Although we do not include this term explicitly, skewness is taken into consideration

when we choose a log-normal density instead of a normal density.

Let φ(x) = 1√
2π
e−

x2

2 be the standard normal density. In what follows, we attach

the superscript (k) to various functions to denote their kth order partial derivatives.

Recall

φ(1)(x) = φ(x)(−x),

φ(2)(x) = φ(x)(x2 − 1),

φ(3)(x) = φ(x)(−x3 + 3x).

We have

C(0, σ2
t ) = exp

[
−
∫ t+∆

0

f(0, u) du

]
· A(σ2

t ) (3.22)

where

A(σ2
t ) = Bt Φ(b(σ2

t ) +
√
σ2
t /2)− e∆K Φ(b(σ2

t )−
√
σ2
t /2) (3.23)

with Bt = exp
[∫ t+∆

t
f(0, u) du

]
and b(σ2

t ) =
[∫ t+∆

t
f(0, u) du−∆K

]
(σ2

t )
−1/2.

Note that

b(1)(σ2
t ) =

−1

2
b(σ2

t ) (σ2
t )
−1,

b(2)(σ2
t ) =

3

4
b(σ2

t ) (σ2
t )
−2,

b(3)(σ2
t ) =

−15

8
b(σ2

t ) (σ2
t )
−3.
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Hence

A(1)(σ2
t ) = Bt φ(b(σ2

t ) +
√
σ2
t /2) [b(1)(σ2

t ) + (σ2
t )
−1/2/4]

− e∆K φ(b(σ2
t )−

√
σ2
t /2) [b(1)(σ2

t )− (σ2
t )
−1/2/4]

= Bt φ(b(σ2
t ) +

√
σ2
t /2)

[
−1

2
b(σ2

t ) (σ2
t )
−1 + (σ2

t )
−1/2/4

]
− e∆K φ(b(σ2

t )−
√
σ2
t /2)

[
−1

2
b(σ2

t ) (σ2
t )
−1 − (σ2

t )
−1/2/4

]
;

and

A(2)(σ2
t ) = Bt φ(b(σ2

t ) +
√
σ2
t /2)

[
−1

2
b(σ2

t ) (σ2
t )
−1 +

1

4
(σ2

t )
−1/2

]2

+Bt φ(b(σ2
t ) +

√
σ2
t /2)

[
3

4
b(σ2

t ) (σ2
t )
−2 − 1

8
(σ2

t )
−3/2

]
− e∆K φ(b(σ2

t )−
√
σ2
t /2)

[
−1

2
b(σ2

t ) (σ2
t )
−1 − 1

4
(σ2

t )
−1/2

]2

− e∆K φ(b(σ2
t )−

√
σ2
t /2)

[
3

4
b(σ2

t ) (σ2
t )
−2 +

1

8
(σ2

t )
−3/2

]
= Bt φ(b(σ2

t ) +
√
σ2
t /2)

[
b2(σ2

t )

4(σ2
t )

2
+

1

16σ2
t

− b(σ2
t )

4(σ2
t )

3/2
+

3b(σ2
t )

4(σ2
t )

2
− 1

8(σ2
t )

3/2

]
− e∆K φ(b(σ2

t )−
√
σ2
t /2)

[
b2(σ2

t )

4(σ2
t )

2
+

1

16σ2
t

+
b(σ2

t )

4(σ2
t )

3/2
+

3b(σ2
t )

4(σ2
t )

2
+

1

8(σ2
t )

3/2

]
, Bt φ(b(σ2

t ) +
√
σ2
t /2) D1(σ2

t )− e∆K φ(b(σ2
t )−

√
σ2
t /2) D2(σ2

t ),

where

D1(σ2
t ) =

b2(σ2
t )

4(σ2
t )

2
+

1

16σ2
t

− b(σ2
t )

4(σ2
t )

3/2
+

3b(σ2
t )

4(σ2
t )

2
− 1

8(σ2
t )

3/2
,

D2(σ2
t ) =

b2(σ2
t )

4(σ2
t )

2
+

1

16σ2
t

+
b(σ2

t )

4(σ2
t )

3/2
+

3b(σ2
t )

4(σ2
t )

2
+

1

8(σ2
t )

3/2
.
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Furthermore, we have

D
(1)
1 (σ2

t ) =
−3b2(σ2

t )

4(σ2
t )

3
− 1

16(σ2
t )

2
+

b(σ2
t )

2(σ2
t )

5/2
− 15b(σ2

t )

8(σ2
t )

3
+

3

16(σ2
t )

5/2
,

D
(1)
2 (σ2

t ) =
−3b2(σ2

t )

4(σ2
t )

3
− 1

16(σ2
t )

2
− b(σ2

t )

2(σ2
t )

5/2
− 15b(σ2

t )

8(σ2
t )

3
− 3

16(σ2
t )

5/2
.

Finally,

A(3)(σ2
t ) = Bt φ(b(σ2

t ) +
√
σ2
t /2)

{[
−b(σ2

t )

2σ2
t

+
1

4(σ2
t )

1/2

]
D1(σ2

t ) +D
(1)
1 (σ2

t )

}
− e∆K φ(b(σ2

t )−
√
σ2
t /2)

{[
−b(σ2

t )

2σ2
t

− 1

4(σ2
t )

1/2

]
D2(σ2

t ) +D
(1)
2 (σ2

t )

}
.

The proposed approximation scheme yields a cap price that has a similar expression

to (3.21) in which the symbol “∼” is attached to those quantities with approximations

involved. Here is a summary of our assessment on the approximation errors:

(i) In the formula

C̃(0) = C(0, σ2) + C(1)(0, σ2) E(σ2
t − σ2) +

1

2
C(2)(0, σ2) E(σ2

t − σ2)2(3.24)

+
1

6
Ẽ
[
C(3)(0, ξ) (σ2

t − σ2)3
]
,

the first three terms match their counterparts in (3.21) exactly based on our

calculated moments Eσ2
t and E(σ2

t )
2.

(ii) To evaluate the approximation error in the last term, write

E
[
C(3)(0, ξ) (σ2

t − σ2)3
]

= E1 + E2 + E3 (3.25)

where Ei = E
[
C(3)(0, ξ) (σ2

t − σ2)3 IAi

]
, i = 1, 2, 3 and A1 = {ξ > σ2 +M},
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A2 = {σ2 ≤ ξ ≤ σ2 + M}, A3 = {ξ < σ2} with a sufficiently large M > 0.

Similarly, we can write

Ẽ
[
C(3)(0, ξ) (σ2

t − σ2)3
]

= Ẽ1 + Ẽ2 + Ẽ3. (3.26)

(iii) Our calculation shows clearly that C(3)(0, v) drops to zero rapidly as v →∞ when

holding other variables [t, ∆, K and the forward rate f(·)] fixed. Therefore, the

error |Ẽ1 − E1| should be small.

(iv) Note that for i = 2, 3,

|Ẽi − Ei| ≤ sup{|C(3)(0, ξ)| : ξ ∈ Ei}
[
|Ẽ(|σ2

t − σ2|3IA2)− E(|σ2
t − σ2|3IA2)|

]
,

in which the skewness factor will affect the result of approximation. That explains

why using a log-normal distribution for σ2
t would be better than using a normal

distribution.
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Chapter 4

Option Pricing With Leverage

Effect

While some previous papers argue that innovations in interest rate levels are largely

uncorrelated with innovations in the volatility of interest rates (e.g., Ball and Torous

(1999), Chen and Scott (2001) and Heidari and Wu (2003)), Trolle and Schwartz (2009)

shows evidence that the correlation between forward rates and their volatilities is im-

portant in capturing the implied volatility skewness observable in the option market.

In this chapter, we would like to extend the framework described in the last chapter to

this more realistic case. In other words, we would like the innovations to forward rates

and their volatilities to be correlated. The idea will be the same as in the previous

chapter; however both pricing formulas and computation will be a lot messier, as there

will be several correction terms entering into the pricing formula to account for the

correlation between the two processes.

The structure of this chapter is similar to the previous one. First we derive the pric-

ing formula conditioning on the volatility process, with the additional assumption that

the two random noises processes for forward rates and their volatilities are correlated.
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Note that there are now three summary statistics presented in the formula involving a

total of seven variables related to the volatility process. In the second section, we derive

the formulas to calculate the first two moments of this seven-variate vector, through

which a trivariate Gaussian vector is proposed to approximate the summary statistics.

Lastly, we test the performance of this Gaussian approximation in the calculation of

option prices.

4.1 Option Pricing Formula

Proposition 2. Under the same setting of last chapter, if instead of independent in-

novations, we consider correlated innovations to take into account of leverage effect.

df(t, T ) = µ(t, T ) dt+ σ(t, T )
[√

1− ρ2 dW1(t, T ) + ρ dW2(t, T )
]
, (4.1)

dlogσ2(t, T ) = [α− β logσ2(t, T )] dt+ σh dW2(t, T )

If we denote σ(s, T ) := exp[h(s, T )/2], the drift µ(t, T ) satisfies the no-arbitrage con-

dition:

µ(s, T ) = σ(s, T )

∫ T

0

σ(s, u)
[√

1− ρ2c1(T, u) + ρc2(T, u)
]
du.

Then conditioning on both the past and the future of volatility structure, the time 0

price of the cap will be given by :

e−
∫ t+∆
0 f(0,u)du

{
e
∫ t+∆
t f(0,u)due−Z1Φ(

∫ t+∆

t
f(0, u)du−∆K + Z2 − Z1√

Z3

+

√
Z3

2
)

−e∆Ke−Z2Φ(

∫ t+∆

t
f(0, u)du−∆K + Z2 − Z1√

Z3

−
√
Z3

2
)

}
(4.2)

where Z1 = ρ(Y1 + Y2) + X1 + X2, Z2 = ρY3 + X3 and Z3 = 2(1− ρ2)X4 as defined in

(4.3) – (4.5).
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Proof: Denote as before N1 = ∆f∆(t, t) =
∫ t+∆

t
f(t, u)du and N2 =

∫ t+∆

0
Rudu =∫ t+∆

0
f(u, u)du, then the time 0 price of a cap with strike price K between the period

[t, t+ ∆] from expectation (3.2) is given by (3.5):

E
(
e−N2(eN1 − e∆K)+

)
= eE(N1−N2)+

V ar(N1−N2)
2 Φ(

E(N1) + V ar(N1)− Cov(N1, N2)−∆K√
V ar(N1)

)

− e∆K−E(N2)+
V ar(N2)

2 Φ(
E(N1)− Cov(N1, N2)−∆K√

V ar(N1)
)

Since

N1 =

∫ t+∆

t

f(0, u)du+

∫ t+∆

t

∫ t

0

µ(u, v)dudv + ρ

∫ t+∆

t

∫ t

0

σ(u, v)dW2(u, v)dv

+
√

1− ρ2

∫ t+∆

t

∫ t

0

σ(u, v)dW1(u, v)dv

N2 =

∫ t+∆

0

f(0, u)du+

∫ t+∆

0

∫ v

0

µ(u, v)dudv + ρ

∫ t+∆

0

∫ v

0

σ(u, v)dW2(u, v)dv

+
√

1− ρ2

∫ t+∆

0

∫ v

0

σ(u, v)dW1(u, v)dv

and (N1, N2) is a bivariate normal vector. Thus

−N1 +N2 =

∫ t

0

f(0, u)du+

∫ t

0

∫ v

0

µ(u, v)dudv + ρ

∫ t

0

∫ v

0

σ(u, v)dW2(u, v)dv

+

∫ t+∆

t

∫ v

t

µ(u, v)dudv + ρ

∫ t+∆

t

∫ v

t

σ(u, v)dW2(u, v)dv

+
√

1− ρ2

∫ t

0

∫ v

0

σ(u, v)duW1(u, v)dv +
√

1− ρ2

∫ t+∆

t

∫ v

t

σ(u, v)dW1(u, v)dv
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Further as

∫ t

0

∫ v

0

µ(u, v)dudv =

∫ t

0

∫ v1

0

σ(u, v1)

∫ v1

u

σ(u, v2)
[√

1− ρ2c1(v1, v2) + ρc2(v1, v2)
]
dv2dudv1

=

∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)
[√

1− ρ2c1(v1, v2) + ρc2(v1, v2)
]
dudv1dv2

V ar

(∫ t

0

∫ v

0

σ(u, v)dW1(u, v)dv

)
=

∫ t

0

∫ t

0

∫ v1∧v2

0

σ(u, v1)σ(u, v2)c1(v1, v2)dudv1dv2

= 2

∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)c1(v1, v2)dudv1dv2

We can have the following quantities to be substituted into equation (3.5) .

−E(N1 −N2)− V ar(N1 −N2)

2

=

∫ t

0

f(0, u)du+ ρ

∫ t

0

∫ v

0

σ(u, v)dW2(u, v)dv + ρ

∫ t+∆

t

∫ v

t

σ(u, v)dW2(u, v)dv

+

∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)
[√

1− ρ2(1−
√

1− ρ2)c1(v1, v2) + ρc2(v1, v2)
]
dudv1dv2

+

∫ t+∆

t

∫ v2

t

∫ v1

t

σ(u, v1)σ(u, v2)
[√

1− ρ2(1−
√

1− ρ2)c1(v1, v2) + ρc2(v1, v2)
]
dudv1dv2

:=

∫ t

0

f(0, u)du+ ρY1 + ρY2 +X1 +X2 :=

∫ t

0

f(0, u)du+ Z1 (4.3)

E(N2)− V ar(N2)

2

=

∫ t+∆

0

f(0, u)du+ ρ

∫ t+∆

0

∫ v

0

σ(u, v)dW2(u, v)dv

+

∫ t+∆

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)
[√

1− ρ2(1−
√

1− ρ2)c1(v1, v2) + ρc2(v1, v2)
]
dudv1dv2

:=

∫ t+∆

0

f(0, u)du+ ρY3 +X3 :=

∫ t+∆

0

f(0, u)du+ Z2 (4.4)
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V ar(N1) = (1− ρ2)

∫ t+∆

t

∫ t+∆

t

∫ t

0

σ(u, v1)σ(u, v2)c1(v1, v2)dudv1dv2

= 2(1− ρ2)

∫ t+∆

t

∫ v2

t

∫ t

0

σ(u, v1)σ(u, v2)c1(v1, v2)dudv1dv2

:= 2(1− ρ2)X4 := Z3 (4.5)

and

E(N1) +
V ar(N1)

2
− Cov(N1, N2) = E(N2)− V ar(N2)

2
+ E(N1 −N2) +

V ar(N1 −N2)

2

(4.6)

Substitute into the formula we obtain:

E
(
e−N2(eN1 − e∆K)+

)
= eE(N1−N2)+

V ar(N1−N2)
2 Φ(

E(N1) + V ar(N1)− Cov(N1, N2)−∆K√
V ar(N1)

)

−e∆K−E(N2)+
V ar(N2)

2 Φ(
E(N1)− Cov(N1, N2)−∆K√

V ar(N1)
)

= e−
∫ t+∆
0 f(0,u)du

{
e
∫ t+∆
t f(0,u)due−Z1Φ(

∫ t+∆

t
f(0, u)du−∆K + Z2 − Z1√

Z3

+

√
Z3

2
)

−e∆Ke−Z2Φ(

∫ t+∆

t
f(0, u)du−∆K + Z2 − Z1√

Z3

−
√
Z3

2
)

}

QED.

4.2 Moments of Characterizing Variables

Similar to the case when shocks to forward rates and their volatility are independent,

in order to get the price of the cap we will need to find the joint distribution of the
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summary statistics (Z1, Z2, Z3)T . Obviously it is very difficult to find the exact dis-

tribution for this three-dimension vector, and thus we will try to find its best proxy

within a multi-variate parametric family. The easiest candidate is the Gaussian family.

But considering Z3 is an integrated volatility and alway positive, we will use a jointly

Gaussian distribution to approximate vector (Z1, Z2, ln(Z3))T , and use it as the sum-

mary statistics instead. We will find the proxy within Gaussian family through the

method of moments.

Fact 1: For two jointly normal random variables N1 and N2, the following result holds

Cov
(
eN1 , N2

)
= Cov(N1, N2) eEN1+V ar(N1)/2 (4.7)

Under the Gaussian assumption for (Z1, Z2, ln(Z3))T and using Fact 1, its mean

and variance-covariance matrix can be calculated from the corresponding values for

(Z1, Z2, Z3)T . The mean and variance-covariance matrix for (Z1, Z2, Z3)T can be found

through the length-7 vector (X1, X2, X3, X4, Y1, Y2, Y3)T whose first two moments can

be calculated based on the following formulas.

Denote c∗(v1, v2) =
√

1− ρ2(1−
√

1− ρ2)c1(v1, v2) + ρc2(v1, v2), then

EX1 =

∫ t

0

∫ v2

0

∫ v1

0

eH1(u,v1,v2)c∗(v1, v2)dudv1dv2 (4.8)

EX2 =

∫ t+∆

t

∫ v2

t

∫ v1

t

eH1(u,v1,v2)c∗(v1, v2)dudv1dv2 (4.9)

EX3 =

∫ t+∆

0

∫ v2

0

∫ v1

0

eH1(u,v1,v2)c∗(v1, v2)dudv1dv2 (4.10)

EX4 =

∫ t+∆

t

∫ v2

t

∫ t

0

eH1(u,v1,v2)c1(v1, v2)dudv1dv2 (4.11)

EYi = 0, ∀i = 1, 2, 3. (4.12)
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V ar(Y1) = E

∫ t

0

∫ t

0

∫ v1∧v2

0

σ(u, v1)σ(u, v2)c2(v1, v2)dudv1dv2

= 2 E

∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)c2(v1, v2)dudv1dv2

= 2

∫ t

0

∫ v2

0

∫ v1

0

eH1(u,v1,v2)c2(v1, v2)dudv1dv2 (4.13)

V ar(Y2) = 2

∫ t+∆

t

∫ v2

t

∫ v1

t

eH1(u,v1,v2)c2(v1, v2)dudv1dv2 (4.14)

V ar(Y3) = 2

∫ t+∆

0

∫ v2

0

∫ v1

0

eH1(u,v1,v2)c2(v1, v2)dudv1dv2 (4.15)

Cov(Y1, Y2) = 0 (4.16)

Cov(Y1, Y3) =

∫ t+∆

0

∫ t

0

∫ v1∧v2

0

eH1(u,v1,v2)c2(v1, v2)dudv1dv2 (4.17)

Cov(Y2, Y3) =

∫ t+∆

0

∫ t+∆

t

∫ v1∧v2

t

eH1(u,v1,v2)c2(v1, v2)dudv1dv2 (4.18)

EX2
1 =

∫ t

0

∫ t

0

∫ v22

0

∫ v21

0

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX2
2 =

∫ t+∆

t

∫ t+∆

t

∫ v22

t

∫ v21

t

∫ v12

t

∫ v11

t

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX2
3 =

∫ t+∆

0

∫ t+∆

0

∫ v22

0

∫ v21

0

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX2
4 =

∫ t+∆

t

∫ t+∆

t

∫ v22

t

∫ v21

t

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c1(v11, v21)c1(v12, v22) du

EX1X2 =

∫ t+∆

t

∫ t

0

∫ v22

t

∫ v21

0

∫ v12

t

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX1X3 =

∫ t+∆

0

∫ t

0

∫ v22

0

∫ v21

0

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX1X4 =

∫ t+∆

t

∫ t

0

∫ v22

t

∫ v21

0

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c1(v12, v22) du

EX2X3 =

∫ t+∆

0

∫ t+∆

t

∫ v22

0

∫ v21

t

∫ v12

0

∫ v11

t

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c∗(v12, v22) du

EX2X4 =

∫ t+∆

t

∫ t+∆

t

∫ v22

t

∫ v21

t

∫ v12

0

∫ v11

t

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c1(v12, v22) du

EX3X4 =

∫ t+∆

t

∫ t+∆

0

∫ v22

t

∫ v21

0

∫ v12

0

∫ v11

0

eH2(u1,u2,v11,v12,v21,v22)c∗(v11, v21)c1(v12, v22) du
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where we abbreviate du := du1du2dv11dv12dv21dv22 in EX2
1 — EX3X4.

To calculate Cov(Xi, Yj), we will make use of Fact 1 and also the fact that when

0 < u3 < u,

h(u, v1) dW2(u3, v3) =

∫ u

0

e−
∫ u
τ β(s,v1)dsσh(τ, v1)dW2(τ, v1) dW2(u3, v3)

= e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3) du3 I{u3<u}

Now we can calculate the following result:

Cov(X1, Y1)

= E

[∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)c∗(v1, v2)dudv1dv2

] [∫ t

0

∫ v

0

σ(u3, v3)dW2(u3, v3)dv3

]
= E

∫ t

0

∫ t

0

∫ v2

0

∫ v1

0

∫ v3

0

σ(u, v1)σ(u, v2)σ(u3, v3)c∗(v1, v2)dW2(u3, v3)dudv1dv2dv3

=

∫ t

0

∫ t

0

∫ v2

0

∫ v1

0

c∗(v1, v2)E

∫ v3

0

σ(u, v1)σ(u, v2)σ(u3, v3)dW2(u3, v3)dudv1dv2dv3

=
1

2

∫ t

0

∫ t

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) du3dudv1dv2dv3

(4.19)

where du3dudv1dv2dv3 is abbreviated as dv and
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H3(u3, u, v1, v2, v3) = E(logσ(u, v1) + logσ(u, v2) + logσ(u3, v3))

+
V ar(logσ(u, v1) + logσ(u, v2) + logσ(u3, v3))

2

=
1

2
E(logσ2(u, v1) + logσ2(u, v2) + logσ2(u3, v3))

+
1

8
V ar(logσ2(u, v1) + logσ2(u, v2) + logσ2(u3, v3))

=
1

8
[

∫ u

0

e−
∫ u
τ 2β(s,v1)dsσ2

h(τ, v1)dτ +

∫ u

0

e−
∫ u
τ 2β(s,v2)dsσ2

h(τ, v2)dτ

+

∫ u3

0

e−
∫ u3
τ 2β(s,v3)dsσ2

h(τ, v3)dτ

+ 2

∫ u

0

e−
∫ u
τ (β(s,v1)+β(s,v2))dsσh(τ, v1)σh(τ, v2)c(v1, v2)dτ

+ 2

∫ u∧u3

0

e−
∫ u∧u3
τ (β(s,v1)+β(s,v3))dsσh(τ, v1)σh(τ, v3)c(v1, v3)dτ

+ 2

∫ u∧u3

0

e−
∫ u∧u3
τ (β(s,v2)+β(s,v3))dsσh(τ, v2)σh(τ, v3)c(v2, v3)dτ ]

(4.20)

68



www.manaraa.com

Similarly, we can obtain other cross products:

Cov(X1, Y2) (4.21)

=
1

2

∫ t+∆

t

∫ t

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

t

[c2(v1, v3) + c2(v2, v3)] eH3(u3,u,v1,v2,v3) dv

= 0

Cov(X1, Y3) (4.22)

=
1

2

∫ t+∆

0

∫ t

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X2, Y1) (4.23)

=
1

2

∫ t

0

∫ t+∆

t

∫ v2

t

∫ v1

t

c∗(v1, v2)

∫ u∧v3

0

[c2(v1, v3) + c2(v2, v3)] eH3(u3,u,v1,v2,v3) dv

= 0

Cov(X2, Y2) (4.24)

=
1

2

∫ t+∆

t

∫ t+∆

t

∫ v2

t

∫ v1

t

c∗(v1, v2)

∫ u∧v3

t

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X2, Y3) (4.25)

=
1

2

∫ t+∆

0

∫ t+∆

t

∫ v2

t

∫ v1

t

c∗(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X3, Y1) (4.26)

=
1

2

∫ t

0

∫ t+∆

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X3, Y2) (4.27)

=
1

2

∫ t+∆

t

∫ t+∆

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

t

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

(4.28)
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Cov(X3, Y3) (4.29)

=
1

2

∫ t+∆

0

∫ t+∆

0

∫ v2

0

∫ v1

0

c∗(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X4, Y1) (4.30)

=
1

2

∫ t

0

∫ t+∆

t

∫ v2

t

∫ v1

0

c1(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

Cov(X4, Y2) (4.31)

=
1

2

∫ t+∆

t

∫ t+∆

t

∫ v2

t

∫ v1

0

c1(v1, v2)

∫ u∧v3

t

[c2(v1, v3) + c2(v2, v3)] eH3(u3,u,v1,v2,v3) dv

= 0

Cov(X4, Y3) (4.32)

=
1

2

∫ t+∆

0

∫ t+∆

t

∫ v2

t

∫ v1

0

c1(v1, v2)

∫ u∧v3

0

[e
−

∫ u
u3
β(s,v1)ds

σh(u3, v1)c2(v1, v3)

+ e
−

∫ u
u3
β(s,v2)ds

σh(u3, v2)c2(v2, v3)]eH3(u3,u,v1,v2,v3) dv

With the above formulas, the first two moments for vector Z = (ρ(Y1 + Y2) +X1 +

X2, ρY3 +X3, 2(1− ρ2)X4)T can be calculated as having mean

(EX1 + EX2, EX3, 2(1− ρ2)EX4)T (4.33)
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and variance-covariance matrix Σ = {Σij} with

Σ11 = ρ2V ar(Y1) + ρ2V ar(Y2) + V ar(X1) + V ar(X2) + 2Cov(X1, X2)

+2Cov(X1, Y1) + 2Cov(X2, Y2)

= ρ2V ar(Y1) + ρ2V ar(Y2) + EX2
1 + EX2

2 + 2EX1X2 + (EX1 − EX2)2

+2Cov(X1, Y1) + 2Cov(X2, Y2) (4.34)

Σ12 = Σ21 = ρ2 Cov(Y1, Y3) + ρ2 Cov(Y2, Y3) + Cov(X1, X3) + Cov(X2, X3)

+ρCov(X1, Y3) + ρCov(X2, Y3) + ρCov(X3, Y1) + ρCov(X3, Y2)

= ρ2Cov(Y1, Y3) + ρ2Cov(Y2, Y3) + EX1X3 + EX2X3 − EX1EX3 − EX2X3

+ρCov(X1, Y3) + ρCov(X2, Y3) + ρCov(X3, Y1) + ρCov(X3, Y2) (4.35)

Σ13 = Σ31 (4.36)

= 2(1− ρ2) [Cov(X1, X4) + Cov(X2, X4) + ρCov(X4, Y1) + ρCov(X4, Y1)]

= 2(1− ρ2) [EX1X4 + EX2X4 − EX1EX4 − EX2EX4 + ρEX4Y1 + ρEX4Y1]

Σ22 = ρ2 V ar(Y3) + V ar(X3) + 2ρCov(X3, Y3)

= ρ2 V ar(Y3) + EX2
3 − (EX3)2 + 2ρCov(X3, Y3) (4.37)

Σ23 = Σ32 = 2(1− ρ2) Cov(X3, X4) + 2ρ(1− ρ2)Cov(X4, Y3)

= 2(1− ρ2) [EX3X4 − EX3EX4 + ρCov(X4, Y3)] (4.38)

Σ33 = 4(1− ρ2)2 V ar(X4)

= 4(1− ρ2)2
[
EX2

4 − (EX4)2
]
. (4.39)

4.3 Numerical Study

In this section, we will follow a similar structure as displayed in the previous chapter

to study 1) the performance of the approximation scheme in option pricing under

this more general framework; 2) the effect of model parameters over option price. In
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particular, we would like to study the effect of correlation parameter between the two

shocks. To achieve 1), we will make use of results in the section 4.2, calculating the first

two moments of the summary statistics, and then generate Gaussian vector from the

calculated moments to obtain the approximated option price. Similar to last chapter,

we will consider the simple case where the parameters are constant, but all parameters

can be easily extended to be deterministic function of time.

4.3.1 Option Pricing

From the equation of first section, option price from model of this chapter can be

obtained by first finding the joint distribution of the summary statistics (Z1, Z2, Z3)T ,

and then calculating the mean values for function, where Z1 = ρY1 + ρY2 + X1 + X2,

Z2 = ρY3 +X3 and Z3 = 2(1− ρ2)X4.

X1 =

∫ t

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)c∗(v1, v2)dudv1dv2

X2 =

∫ t+∆

t

∫ v2

t

∫ v1

t

σ(u, v1)σ(u, v2)c∗(v1, v2)dudv1dv2

X3 =

∫ t+∆

0

∫ v2

0

∫ v1

0

σ(u, v1)σ(u, v2)c∗(v1, v2)dudv1dv2

X4 =

∫ t+∆

t

∫ v2

t

∫ t

0

σ(u, v1)σ(u, v2)c1(v1, v2)dudv1dv2

Y1 =

∫ t

0

∫ v

0

σ(u, v)dW2(u, v)dv

Y2 =

∫ t+∆

t

∫ v

t

σ(u, v)dW2(u, v)dv

Y3 =

∫ t+∆

0

∫ v

0

σ(u, v)dW2(u, v)dv

where c∗(v1, v2) =
√

1− ρ2(1−
√

1− ρ2)c1(v1, v2) + ρc2(v1, v2).

Method 1:
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Since logσ2(u, v) = e−βu logσ2(0, v) + α
β
(1 − e−βu) + σe−βu

∫ u
0
eβsdW2(s, v), all the

summary statistics will be solely determined by the history of W2(u, v), 0 < u < v < T .

The simulated option price can be obtained through the following process:

1. Simulate discretized triangular plane W2(u, v), 0 < u < v < T

2. calculate X1, X2, X3, X4, Y1, Y2, Y3 and thus Z1, Z2, Z3

3. calculate option price C0(K,Z1, Z2, Z3) where K is the strike rate

4. repeat the above process to get a series of simulated option payout under the

martingale measure, and then take the average to get the option price as of time

0;

Method 2:

We also approximate the option price by

1. Calculate first two moments of the summary statistics vector (Z1, Z2, Z3),

2. Assume (Z1, Z2, log(Z3))T is Gaussian, and make use of Fact 1 to calculate its

mean and variance-covariance matrix,

3. generate normal vector with matching first two moments to (Z1, Z2, log(Z3))T ,

4. calculate option price from the simulated normal vector

Now we can compare the option price from the two different methods.

4.3.2 Pricing Errors

The brute force MC of Method 1 will introduce discretization error, which theoreti-

cally could be reduced to 0 if we can increase the number of grid points to infinite and

generate even more samples. But practically speaking, this is impossible and we shall
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find that it is actually very difficult to reduce due to the computation power it requires

for the random filed process.

The Gaussian approximation of the summary statistics of Method 2 will introduce

some approximation Error. It may be true that the joint distribution of the summary

statistics are not Gaussian, but under certain condition similar to last chapter, its effect

on the pricing can be bounded and small.

The following table 4.1 will show that option price from Method 1 are actually

convergent to Method 2 when we increase the number of grid points; and furthermore

it also illustrates that option prices from the two methods are close for a number of

different combination of parameter settings.

4.3.3 Effect of Correlation Parameters

Correlation Parameter k1 and k2

It has been seen in the previous chapter that correlation among forward rates has a

large effect on option price while correlation among their volatilities has very small

effect on option price. But from the table 4.1 below we can see that, correlation among

volatilities now are much more influential than before, as it now has a spill over effect

on the forward rates, which comes from the correlation between the two innovations to

forward rates and their volatilities. This makes sense intuitively, as highly correlated

shocks to the volatilities (of different terms) will be accompanied by more correlated

shocks to the forward rates and thus higher option price.

Correlation Between Forward Rate and its Volatility ρ

It has been noticed in the literature that, correlation between forward rate and its
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Table 4.1: Price differences from different correlation parameter k1 and k2, where
ci(u, v) = e−ki|u−v|, i = 1, 2. Here, PApprox is the price from the approximated distri-
bution for the summary statistics, with calculated first two moments from section 4.2;
PMC is the price from the brute force Monte Carlo samples of the summary statistics;
P ∗Approx is the price from approximated distribution for the summary statistics, with
the two moments matching their MC samples; TotalErr is the ratio of RMSE and
PMC , where RMSE is the square-root of average squared difference between PApprox
and PMC ; AppoxErr is the ratio between P ∗Approx − PMC and PMC . Other parameters
values are chosen to be: α = −2, β = 1, σh = 1 and ρ = 0.5; and the price of a $10,000
notional at-the-money cap with t = 1 and T = 1.25 is considered and priced; proce-
dures described in section 4.3.1 have been used to draw samples using Monte Carlo
method, with sample size of 50,000; 200 grid points have been using between 0 and t,
and between t and T as well.

k1 k2 PApprox PMC P ∗Approx TotalErr AppoxErr

−8 -1 3.52 3.49 3.55 1.1% 1.7%
−4 -1 3.84 3.81 3.87 1.0% 1.8%
−2 -1 4.04 4.02 4.07 0.9% 1.5%
−1 -1 4.14 4.14 4.20 0.7% 1.6%
−0.5 -1 4.22 4.20 4.26 0.9% 1.5%
−0.25 -1 4.26 4.23 4.28 0.9% 1.3%
−0.125 -1 4.30 4.25 4.31 1.4% 1.5%

0 -1 4.29 4.27 4.32 0.8% 1.4%
−1 -8 3.92 3.92 3.94 0.6% 0.8%
−1 -4 4.03 4.03 4.07 0.7% 1.2%
−1 -2 4.11 4.10 4.14 0.8% 1.3%
−1 -1 4.14 4.14 4.20 0.7% 1.6%
−1 -0.5 4.19 4.16 4.22 1.0% 1.6%
−1 -0.25 4.20 4.17 4.23 1.0% 1.5%
−1 -0.125 4.22 4.18 4.24 1.4% 1.7%
−1 0 4.22 4.18 4.24 1.1% 1.7%
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volatility is necessary to produce a skewed implied volatility curve that has been fre-

quently observed. To investigate if the same phenomenon exists in our more general

framework, we will compute option prices and thus implied volatility curve under dif-

ferent correlation settings. From the figure 4.1 below, it can be seen that we are very

flexible in terms of the shape of curve we can produce: skewed, smile shaped or reverse-

skewed implied volatility curve can all be generated by tuning the correlation parameter.

The lower correlation corresponds to skewed curve, the higher correlation corresponds

to reverse-skewed curve, while something in the middle corresponds to smile shaped

implied volatility curve.
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Figure 4.1: Implied Volatility for different ρ′s. For different values of ρ, the pricing
formula can produce different shape of Implied Volatility curve. For negative or small
ρ, it will be skewed which is consistent with the observed price under normal market
condition. And as ρ becomes larger, it will illustrate smile shape; and as ρ grows even
larger, it will tilt further and can eventually become negatively skewed. This property of
being able to produce different shapes of implied volatility has illustrated its flexibility
in matching market prices and its potential in real world application.
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Chapter 5

Model Calibration

5.1 Introduction

In this chapter, we will discuss the issue of calibrating random field forward rate model

with stochastic volatilities(SV). There are generally three different approaches of cal-

ibrating the models, or in other words estimating the model parameters. The first

option is the Least Square method. This method however, will usually require an ex-

plicit formula for assets (bond, cap or swaption), which generally is only available for

Gaussian models. E.g., Pang(1998) calibrated Gaussian random field and Gaussian

n-factor HJM model. Since there is a closed form solution for cap and semi-closed

form for swaption, he used least square method from cap and swaption data. The

second option is estimation by maximizing likelihood. Likelihood method is applica-

ble to the stochastic volatility case, where Kalman filter can be used to maximize the

quasi-likelihood function. E.g., Trolle and Schwartz(2009) used quasi-likelihood and

extended Kalman filter to calibrate a very general HJM affine factor SV model with

correlation between forward rate factors and volatility factors. Similarly, Han(2007)

also used Kalman filter for zero-coupon bond prices to estimate a factor model with
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square-root process for the variance-covariance matrix without separating the corre-

lation and the volatility specification. The third method of estimation will be using

Bayesian MCMC method to obtain the posterior distribution for the parameters. E.g.,

Eraker (2004), Jacquier et al (1994) and Cheng et al (2008) used it for the estimation

in the equity case; And Bester (2004) used it to estimate the Affine Factor and Affine

Random Field Model for forward rates. Comparing MCMC method with the Kalman

filter method, aside from one being Bayesian and the other one frequentist, they both

are Monte Carlo based method. Kalman Filter is essentially still MLE. It will simulate

a large amount of paths for the state variables, approximate the large integrals, and

then solve for MLE. However since the estimation problem involves a large number

of latent variables, and thus usually is very difficult to estimate, we can use Bayesian

method to incorporate prior information to help the calibration. Especially from the

literature of estimating OU process, there might be large bias, especially for the mean

reverting speed parameter, in the estimation of parameters.

We will use Markov Chain Monte Carlo(MCMC) method and a similar data input

as Bester (2004) to estimate a log-linear SV model. A number of authors have used the

MCMC method to calibrate their models from real data, but few of them have actually

carried out simulation studies to test the accuracy and performance of such method,

which is the purpose of this chapter. We will examine in details a one factor SV model

using simulated forward rate data to test the performance of the MCMC based method.

First we describe the model we are going to calibrate and the chosen parameters for it.

100 different data sets each with a fixed sample size will be generated from the assumed

model as input to the calibration step. OpenBUGS will then be used to implement the

inference step where we will pick the sampling procedure for each of the parameters

based on the forms of the posterior distributions. Finally, we test convergence of the

79



www.manaraa.com

MCMC procedure and report results from the simulation study.

5.2 Simulation Study: One-factor SV model

In this section, we will try to calibrate one of the random field models with a one-factor

stochastic volatility process, and use simulation technique to test the effectiveness of the

calibration procedure. In essence, assuming that forward rate dynamics follow exactly

the assumed model with known parameters, we can generate forward rate paths from

the model for a certain period and then we will apply the calibration procedure and get

the estimates for the model parameters. The performance of the calibration procedure

can be tested by looking at the difference between the estimated parameters and their

true values. Since bias can be introduced from a limited number of observations, we

can either generate a very long series of data or we can fix a limited number of obser-

vations and repeat the data generation and calibration process for a large number of

times. We will opt for the second option here because in reality only a limited number

of samples are available, and we shall test the performance of the finite sample inference.

Consider the discretized version of the model with independent noise between for-

ward rate and its volatility:

ft+∆(T )− ft(T ) = µt(T )∆ + e
ht
2 (Wt+∆(T )−Wt(T )) (5.1)

ht+∆ − ht = (α− βht)∆ + σh(Bt+∆ −Bt) (5.2)

Here we approximate the forward rate curve Ft = (ft(T1), . . . , ft(TNT ))T as a vector of

length NT , and µt will depend on which measure our model is built upon. I.e., under

martingale measure it is a deterministic function of ht and field correlation c(u, v)
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following equation (2.3), and under physical measure it is not restricted. Here we

assume we are estimating directly from observed forward rate curve and thus under

physical measure. Also since our main focus will be on the volatility process and

option price, we will assume that the curve has been de-meaned and thus µ(t) is always

zero.

For simplicity here we will take the parametric form for c(, ) as

c(u, v) = e−k|u−v| (5.3)

To reduce the correlation between parameters and also notice that β needs to be

constrained to make the discretized OU ( AR(1) ) process convergent, we will re pa-

rameterize equation (5.2) by introducing µh = α
β

and ϕ1 = 1 −∆β and thus equation

(5.2) will become:

ht+∆ − µh = ϕ1(ht − µh) + σh(Bt+∆ −Bt) (5.4)

Since the convergence of (5.5) would require that |ϕ1| < 1, we further introduce

ϕ = (ϕ1 + 1)/2 and impose the constrain that ϕ to be between 0 and 1, and equation

(5.5) becomes:

ht+∆ = µh + (2ϕ− 1)(ht − µh) + σh(Bt+∆ −Bt) (5.5)

We will use Bayesian method to calculate the distribution for the model parameters.

I.e. given observed forward rate data and prior distributions on the parameters, we

would like to generate posterior distributions for the parameters. The difficulty of the

process lies in the un-observable volatility state variables {ht} . We will treat them as

latent variables and simulate samples from their conditional distributions along with
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other regular variables. In other words, what we need is p(µh, ϕ, σh, k|{Ft}), but we

will simulate from p(µh, ϕ, σh, k, {ht} | {Ft}) instead, and then the partial vector will be

from the marginal distribution p(µh, ϕ, σh, k|{Ft}) which is what we aim for. Markov

Chain Monte Carlo (MCMC) method can be used to simulate from the distribution of

this long vector. The full likelihood function for all observations is:

p0(µh, ϕ, σh, k)p0(h0)p({ht}|µh, ϕ, σh)p({Ft}|{ht}, k)

= p0(µh)p0(ϕ)p0(σh)p0(k)p0(h0)
N∏
j=1

p(htj |htj−∆, µh, ϕ, σh)
N∏
j=1

p(Ftj |htj−∆, k) (5.6)

From the result of Gibbs sampling, in order to sample from the distribution of

p(µh, ϕ, σh, k, {ht} | {Ft}), we need only sample sequentially as follows:

1. Set initial values for each of the parameters µ
(0)
h , ϕ(0), σ

(0)
h , k(0), h

(0)
0 .

2. draw a random sample of k(i+1) from k|{Ft}, µ(i)
h , ϕ

(i), σ
(i)
h , {h

(i)
t } ∝ p0(k)p({Ft}|k, {h(i)

t })

3. draw random samples for σ
(i+1)
h from σh|µ(i)

h , ϕ
(i), {h(i)

t } ∝ p0(σh)p({ht}|µ(i)
h , ϕ

(i), σh)

4. draw random samples for µ
(i+1)
h from µh|σ(i)

h , ϕ
(i), {h(i)

t } ∝ p0(µh)p({ht}|µh, ϕ(i), σ
(i+1)
h )

5. draw random samples for ϕ(i+1) from ϕ|σ(i+1)
h , µ

(i+1)
h , {h(i)

t } ∝ p0(ϕ)

p({ht}|µ(i+1)
h , ϕ, σ

(i+1)
h )

6. for each t = t1, . . . , tN , draw a random sample of h
(i+1)
t from

ht|Ft+∆, h
(i+1)
t−∆ , h

(i)
t+∆, µ

(i+1)
h , ϕ(i+1), σ

(i+1)
h , k(i+1) which has a density function pro-

portional to

p(Ft+∆|ht, k(i+1))p(ht|h(i+1)
t−∆ , µ

(i+1)
h , ϕ(i+1), σ

(i+1)
h )p(h

(i)
t+∆|ht, µ

(i+1)
h , ϕ(i+1), σ

(i+1)
h )

Then as i large enough, the sampled vector (µ
(i)
h , ϕ

(i), σ
(i)
h , k

(i)) will approximately
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come from the posterior distribution.

Now let’s move on to the details of drawing samples from each of the steps. We will

implement the MCMC inference using the OpenBUGS version of the BUGS (Bayesian

inference Using Gibbs Sampling) software, within which we will specify the model and

the sampling methods used in each step. The following subsections will describe the

sampling procedure to be used in the calibration process. Note that, for the ease of

read we will drop the iteration index for the parameters we are not updating when

there are no confusions.

5.2.1 Sampling k

To sample from the posterior distribution k|{Ft}, {h(i)
t } ∝ p0(k)p({Ft}|k, {h(i)

t }) where

p({Ft}|k, {h(i)
t }) ∝

N∏
j=1

|Σtj |−
1
2 e
− 1

2
(Ftj+∆−Ftj )TΣ−1

tj
(Ftj+∆−Ftj )

= |Σti |−
N
2 e
− 1

2

∑N
j=1(Ftj+∆−Ftj )TΣ−1

tj
(Ftj+∆−Ftj )

∝ e−NNT ht/2|Σ|−
N
2

1 e
− 1

2∆eht

∑N
j=1((Ftj+∆−Ftj ))TΣ−1

1 (Ftj+∆−Ftj )
(5.7)

where

Σt = V ar(Ft+∆ − Ft) = ∆eht
(
e−k|Tm−Tn|

)
m,n

≡ ∆ehtΣ1 (5.8)

and thus |Σt| = (∆eht)NT |Σ1| and Σ−1
t = ∆−1e−htΣ−1

1 .

Since the distribution is highly non-standard which involves the calculation of norm
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and inverse of a matrix, no conjugate prior is available, nor is the log-likelihood guar-

anteed to be concave so that no envelop can be easily built to dominate it and thus

Adaptive Rejection Sampling is also not applicable. Random walk Metropolis algo-

rithm (e.g., Gelman etal (1996), Haario, Saksman and Tamminen (1999) )can be used

to do the sampling, but a more recent development by Neal (2003) introduced a more

efficient slice sampling which has been used as the generic sampling method in BUGS.

The idea of slice sampling came from the observation that, in order to sample a

variable k which has a distribution proportional to f(k), we can sample uniformly over

the plate of U = {(k, y) : 0 ≤ y ≤ f(k)} which is just below the curve defined by

f(k). I.e., the joint distribution for (k, y) will be p(k, y) ∝ 1 for 0 ≤ y ≤ f(k) and

0 otherwise. The marginal distribution for k will be p(k) ∝
∫ f(k)

0
dy ∝ f(k) which is

exactly what we are looking for.

If we introduce an auxiliary variable y and we want to sample from the uniform

distribution of (k, y), we can again follow the idea of Gibbs Sampling and simulate

them one after another. Here is one proposal from Neal (2003) that can generate

(k(i+1), y(i+1)) from (k(i), y(i)).

• draw a value y(i+1) uniformly from (0, f(k(i))), thereby introducing a horizontal

slice S = {k : y(i+1) ≤ f(k)}.

• Find an interval I = (L, R) around k(i) that contains at least a large portion

of the slice. For this step we choose to use the stepping out procedure proposed

by Neal (2003). We define the interval by randomly positioning an interval of

length w (chosen during the adaptive phrase) around k(i), and then expanding

the interval in steps of w on both ends separately until they are outside of the

slice.
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• Draw a new point uniformly from within I until a point inside the slice S is found,

and accept it as k(i+1). Points outside of the slice are used to shrink the interval.

5.2.2 Sampling µh, ϕ and σh

Since

N∏
j=1

p(htj |htj−∆, µh, ϕ, σh)

= (2π)−
N
2 σ−Nh exp(

N−1∑
j=0

(htj+∆ − (2ϕ− 1)htj − 2(1− ϕ)µh)
2/(2σ2

h)) (5.9)

Given ht, t = t1, . . . , tn, σh and ϕ, and assume a Normal prior as N(µ0, σ
2
0) for µh,

we keep the terms containing µh in equation (5.6) to get a posterior distribution of:

p(µh|{ht}, ϕ, σh) ∝ p0(µh)
N∏
j=1

p(htj |htj−∆, µh, ϕ, σh)

∝ exp(−(µh − µ0)2

2σ2
0

)exp(−
∑N−1

j=0 (htj+∆ − (2ϕ− 1)htj − 2(1− ϕ)µh)
2

2σ2
h

)

∝ exp(−1

2
[(

1

σ2
0

+
4N(1− ϕ)2

σ2
h

)µ2
h − 2µh(

µ0

σ2
0

+
2(1− ϕ)

∑
htj+∆ − (2ϕ− 1)htj
σ2
h

)])

∝ N(µN , σ
2
N) (5.10)

here σ2
N = ( 1

σ2
0

+ 4N(1−ϕ)2

σ2
h

)−1 and µN = σ2
N(µ0

σ2
0

+
2(1−ϕ)

∑
htj+∆−(2ϕ−1)htj
σ2
h

).

Similarly, denote τ = 1
σ2
h

and assume a gamma prior τ ∼ Gamma(g0, λ0), we can
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have a posterior for τ following Gamma distribution as

p(τ |{ht}, µh, ϕ) ∝ p0(τ)
N∏
j=1

p(htj |htj−∆, µh, ϕ, σh)

∝ τ g0−1e−τ/λ0τN/2exp(−τ
2

N−1∑
j=0

(htj+∆ − (2ϕ− 1)htj − 2(1− ϕ)µh)
2)

∝ Gamma(g0 +N/2, (1/λ0 +
1

2

N−1∑
j=0

(htj+∆ − (2ϕ− 1)htj − 2(1− ϕ)µh)
2)−1)

(5.11)

Since we need the discretized AR(1) process to be convergent which is equivalent

of ϕ being between 0 and 1, we will assume a beta prior for it as Beta(b0, b1), and thus

it has a posterior of

p(ϕ|µh, σh, {ht}) ∝ p0(ϕ)
N∏
j=1

p(htj |htj−∆, µh, ϕ, σh)

∝ ϕb0−1(1− ϕ)b1−1exp(− 1

2σ2
h

N−1∑
j=0

(htj+∆ − (2ϕ− 1)htj − 2(1− ϕ)µh)
2)

∝ ϕb0−1(1− ϕ)b1−1exp(−2ϕ2

σ2
h

N−1∑
j=0

(htj − µh)2 +
2ϕ

σ2
h

N−1∑
j=0

(htj − µh)(htj+∆ + htj − 2µh))

∝ ϕb0−1(1− ϕ)b1−1exp(−ANϕ2 +BNϕ) (5.12)

Here AN = − 2
σ2
h

∑N−1
j=0 (htj − µh)2 and BN = 2

σ2
h

∑N−1
j=0 (htj − µh)(htj+∆ + htj − 2µh).

Since the distribution is non-standard, slice sampling similar to the sampling of k can

be used to simulate from this distribution.

Note that, it is known in the literature that estimation of the parameter β is very

difficult, and there is usually an upward bias when using MLE or LS. We also expect

the same bias from Bayesian method. To minimize the effect of this effect, we may
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need to apply a somewhat informative prior on the parameters. This prior will depend

on experience and the type of asset to calibrate.

5.2.3 Sampling for ht, t = t1, . . . , tT

In order to sample a series of {ht}, we can follow the concept of Gibbs sampling

by simulating them one by one. Assume we have updated until {ht−∆}, then to

sample ht, we have its posterior distribution as p(ht|Ft, h(i+1)
t−∆ , h

(i)
t+∆, µh, ϕ, σh, k) ∝

p(Ft|ht, k)p(ht|h(i+1)
t−∆ , µh, ϕ, σh)p(h

(i)
t+∆|ht, µh, ϕ, σh), where

p(Ft|ht, k) ∝ |Σt|−
1
2 e−

1
2

(Ft+∆−Ft)TΣ−1
t (Ft+∆−Ft)

∝ e−NT ht/2e
− 1

2∆eht
(Ft+∆−Ft)TΣ−1

1 (Ft+∆−Ft)

p(ht|h(i+1)
t−∆ , µh, ϕ, σh) ∝ e

− 1

2∆σ2
h

(ht−(2ϕ−1)ht−∆−2(1−ϕ)µh)2

p(h
(i)
t+∆|ht, µh, ϕ, σh) ∝ e

− 1

2∆σ2
h

(ht+∆−(2ϕ−1)ht−2(1−ϕ)µh)2

Since the posterior distribution is again non-standard, slice sampling can be used

to sample from it. The procedure will be the same as the sampling of k.

5.3 Simulation Results

5.3.1 Set up

Detailed simulation process for the model setting of (5.1) - (5.3) will be the following:

• Set model parameters as k = 1, α = −2, β = 1, σh = 1 and thus µh =

α
β

= −2. Also assume that the forward rate curve is observable at the fix terms

(0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 8, 10).

• Generate a path for ht and then Ft with 500 observations for 10 years, and thus
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∆ = 0.02, T = 10 and ϕ = 0.99;

• Calibrate the model from values of Ft alone with prior distribution for the param-

eters chosen as k ∼ Gamma(0.1, 0.1), µh ∼ Norm(−1, 20), ϕ ∼ Beta(20, 1.5)

and σ2
h ∼ IG(0.1, 0.1).

• Repeat the last three steps for 100 times.

5.3.2 Convergence Diagnostic

To test if the MCMC procedure is convergent or not, we look at one of the estimation

results in details:

• Three different sets of initial values have been used. It can be seen from Figure

5.1 that after the burn in period, the three different chains converge and they

mix well with each other. The initial values does not seem to affect the posterior

distribution;

• Autocorrelation: from Figure 5.2 there are still some autocorrelations for k after

the thin of 10, autocorrelations for other parameters are much better.

• BGR plot of Figure 5.3: it can be seen that all three lines stabilize after the

burn in period, and the red line converges to 1, which is a good indication of

convergence based on Brooks and Gelman (1998)

• running mean and quantile in Figure 5.4: they are all stable after the burn in

period.

The above observations all indicate that the MCMC samples have converged rea-

sonably well.
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5.3.3 Estimation Result

Table 5.1 and Figure 5.5 summarize the results from the 100 reps of the calibration

problem. Here ”True” column gives the actual parameter values we choose for the

study; ”Avg(Mean)” column is the average of the 100 posterior mean estimates for each

replication, the distance between this and the True column measures the magnitude of

the bias; ”Std(Mean)” is the standard error of the 100 posterior mean estimates and it

indicates how far the posterior mean could be from the actual mean in each replication;

”Avg(SD)” is the average of the 100 posterior standard deviation estimates, which is

just the average of posterior standard deviation estimates.

It can be seen that:

• The parameter on the forward rate correlation and the mean level of the volatility

factor are very well estimated, with little bias and small deviate from the true

value in each replication.

• The volatility of the volatility is hard to estimate with high standard deviation,

but it is reasonably unbiased.

• The mean reverting speed parameter is very difficult to estimate with big bias and

big variance, which is consistent with the O-U process estimation in the literature

(e.g., Tang and Chen (2009), Yu (2009)).

In conclusion, MCMC method provides a good way of estimating stochastic volatil-

ity model with hidden state variables {ht}. The estimates on model parameters are

mostly unbiased and accurate except that it provides no magic for the estimation of

mean reversion speed parameter for the OU process, and will still be somewhat biased

and skew to the right.
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True Avg(Mean) Std(Mean) Avg(SD) Coverage
k 0.1 0.10 0.005 0.005 98%
µh -2.0 -2.03 0.19 0.21 94%
β 1.0 1.45 0.67 0.62 63%
σh 1.0 1.04 0.13 0.13 93%

Table 5.1: Summary statistics from the 100 reps. Estimation on the correlation param-
eter among the forward rates (k) and the mean volatility level (µh) are unbiased with
small error, which is reasonable as we have direct observation on the forward rates;
The estimation on β and σh will be more difficult as they are not directly observable,
especially estimate for beta has a large bias and large standard error, which is consistent
with the literature that mean reverting parameter of a OU process is very difficult to
estimate.

5.4 Appendix: BUGS code

yisigma2,t,i,j = ((isig2,i,j/e
θt)/sqrtdt)/sqrtdt

}
1 ≤ j ≤ NT

}
1 ≤ i ≤ NT

y
t,1...NT ∼ dmnorm(my

1...NT, yisigma
2,t,1...NT,1...NT)

 1 ≤ t ≤ N

µ ∼ dnorm(−1, 0.05)

phi? ∼ dbeta(20, 1.5)

ivar ∼ dgamma(0.1, 0.1)

itau2 = (ivar/sqrtdt)/sqrtdt

φ = 2 · phi? − 1

β = ((1− φ)/sqrtdt)/sqrtdt

sigh =
√

1/ivar

θ0 ∼ dnorm(µ, itau2)

thmean1 = µ+ φ · (θ0 − µ)

θ1 ∼ dnorm(thmean1, itau2)

k ∼ dgamma(0.1, 0.1)

sig2,i,j = e(−1)·k·abs(vti−vtj)

}
1 ≤ j ≤ NT

}
1 ≤ i ≤ NT

isig
2,1...NT,1...NT = inverse(sig

2,1...NT,1...NT)
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thmeant = µ+ φ · (θt−1 − µ)

θt ∼ dnorm(thmeant, itau2)

 2 ≤ t ≤ N
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Figure 5.1: Trace plot for each of the parameters after discarding the first 10,000
samples, where each sample is retained only every 10th iteration, i.e. thinning of 10.
Three chains have been produced here with different initial values. The three chains are
very well mixed and it is a good indication of convergence for the MCMC procedure.
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Figure 5.2: Auto-correlation between draws of various lags for a series of every 10th
samples. Here the samples are obtained by keeping every 10th-iteration and also discard
the first 10,000 samples as burn in. Even after this effectively thinning of 100, there
is still some autocorrelation between the samples of k, while other parameters are
much better. This high autocorrelation between MCMC draws will reduce the effective
sample size, and thus longer chain is needed for a more accurate posterior distribution.
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Figure 5.3: BGR plot: this comes from the idea of ANOVA where variance estimate
from within chains should be close to the variance estimate from across chains. And thus
a ratio of the two estimates (red line) closing to 1 is a good indication of convergence.
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Figure 5.4: Running quantile plot: 5%, 50% and 95% percentile of the retained samples
upto each point. Stable percentiles for each variable are also a good indication of
convergence.
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Figure 5.5: Density plots for the posterior mean estimates from the 100 replications.
Here the red lines mark the true value for each of the parameters. A density more
concentrated around the true value indicates the MCMC procedure described here in
general provides good estimate for the parameter. It can be seen that estimation for
k is both unbiased and accurate, estimates for µh and σh are unbiased in general, but
they can still be pretty far from the true value and thus a larger number of observation
might be needed to improve the estimation; While estimate for beta is somewhat biased
with skew to the right.
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Chapter 6

Future Work

In the preceding chapters, we mainly discuss the issue of cap pricing under random

field interest rate model with random field volatility structure and have shown that the

model is very flexible to match the various features exhibited in the cap market. To

make the model complete and comprehensive, more work need to be done so that it can

price other interest rate derivatives (e.g. swaption) quickly, so that the model can be

calibrated using both bond prices and option prices, so that, ideally, the model can be

used to predict future interest rates movements. There are still a lot of open questions

need to be addressed and we comment here about some potential future work:

• Swaption pricing: the success of our approximation method for cap price has

relied on its closed form solution under deterministic volatility. Unfortunately

there does not exist a closed form solution but rather an approximated formula

for swaption price, which was proved to be accurate under Gaussian model. A

natural next step will be to extend our method into swaption price utilizing the

approximated formula. Its accuracy remains to be seen as there will be two steps

of approximating now which could amplify error on the way.

• Incomplete market: following discussion in the Market Completeness section of

Chapter 2, it is obvious that the model of our discussion results in an incomplete
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market which in turn implies that there may not be a unique martingale measure.

One issue that needs to be addressed is to find a market price of risk process for

the two random field sources that can hopefully preserve the structure of the

model after changing of measure. There is a ”extended affine” market price of

risk specification suggested by Cheredito, Filipovic and Kimmel (2007) that will

preserve the affine structure of a factor model, however, no such specification

exists for random field model as far as we are aware. It will be very interesting

to see if there exists such a structure preserving market price of risk process in

the random field case.

• The most general random field model will of course contain the factor HJM model

as a special case. However, for a implementable random field model, we have to

make some simplifying assumptions, e.g. assuming some parametric form for the

correlation structure, which may not necessarily be more flexible than their HJM

counterparts. So another interesting extension is to find a correlation structure

that is both easy to fit and flexible. This is a nontrivial task as not all functions

satisfy the requirement of being one as discussed in Chapter 2. Best (2004) used

nonparametric method to calibrate the correlation function which is obviously

very flexible, however it is probably difficult to have a good estimate with the

existence of stochastic volatility. Another interesting extension is to allow the

correlation function to be random as well. This has been possible in the factor

HJM model, e.g. in Han (2007) and Trolle and Schwartz (2009), where they start

with random covariance and thus it is natural that the correlation can be random.
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